Letters to the editor

Does lymphoma ‘cure’ rheumatoid arthritis?

Prolonged remission in established rheumatoid arthritis (RA) is extremely rare. During a six year follow up of 458 patients Wolfe and Hawley observed two prolonged remissions of more than 48 months, and concluded that ‘once established, RA tends to remain, interrupted briefly in a small minority of patients by remission of disease.7 However prolonged remissions or cures have been described as secondary to Cushing’s disease8 and human immunodeficiency virus infection.9 We have observed a case of cure of RA accompanied by, and probably secondary to, the development of γ heavy chain disease in the context of secondary Sjögren’s syndrome.7 RA was diagnosed in January 1986, in a 53 year old woman. Retrospective examination of her chart shows the presence of six of seven 1987 American Rheumatism Association revised criteria for the diagnosis of RA. Her treatment included intramuscular gold, non-steroid anti-inflammatory drugs, and several intra-articular injections of corticosteroids. Considerable improvement was noted at the end of 1988 and has persisted since with enlargement of the salivary glands and the eyelids. Eyelid ‘fat’ was removed in August 1995 for cosmetic and functional purposes and showed infiltra- tion by a monotonous population of small lymphocytes. There was decreased γ globulinaemia (4.8 g/l, normal value = 6 to 16 g/l) with free monoclonal γ heavy chains representing 75% of total IgG and an additional faint IgG κ band suggestive of a second monoclonal paraprotein. Flow cytometry of blood and bone marrow confirmed the presence of two B cell clones. The eyelid enlargement recurred quickly. Subsequent irradiation relieved the visual field obstruction and was later successfully extended to the swollen submandibular regions. Sixteen months after diagnosis, the patient’s condition is stable.

The immunologically active polyclonal γ globulin concentration was 1 g/l (reference value 5.4 to 14.8), which is lower than in other leukaemias/lymphomas. The levels of IgA (0.38 g/l, reference value 0.65 to 1.48) and IgM (0.28 g/l, reference value 0.45 to 2.6) were also low. Lymphocyte count was 1120/μl with 54% of T cells and most of the B cells part of the clonal processes. Fifteen months later the paraprotein levels were stable, the polyclonal IgG have increased to 3 g/l, IgA to 0.55 g/l, IgM to 0.35 and lymphopenia worsened at 800.

We think that the following chain of events occurred in this case: immune disorder, autoimmune disease (RA and secondary Sjögren’s syndrome), malignant B cell neoplasm, secondary immunodeficiency with cure of the RA. The first three steps are well known, the fourth is probably exceptional but this case and others1 suggest that secondary immunodeficiency should be considered during spontaneous cures of well established RA.

ALAIN DUMAS
JAMES STRAUHCEN
Department of Pathology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA

Insufficiency fracture of the sacrum revealing a pregnancy associated osteoporosis. First case report

Osteoporosis of pregnancy, usually responsible for spinal or femoral fracture, is rare as is insufficiency fracture of the sacrum, usually occurring in the elderly.1 Magnetic resonance imaging (MRI) permitted during pregnancy, led us to diagnose an insufficiency fracture of the sacrum revealing a pregnancy associated osteoporosis, never previously reported to the best of our knowledge. Rheumatologists need to be aware of this new cause of pelvic pain during pregnancy. A 29 year old pregnant (seventh month) woman presented with a spontaneous acute claudication in conjunction with a left hyperalgic buttck pain. Her past medical history showed: low back pain, since the second month of her pregnancy, relieved by rest and paracetamol; smoking (10 packet years) stopped at the sixth month of pregnancy; one spontaneous miscarriage at six months.

Table 1 Biological markers

<table>
<thead>
<tr>
<th>Biological markers</th>
<th>Patient</th>
<th>Normal range for our laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum calciuma</td>
<td>2.46 mmol/l</td>
<td>2.2–2.6</td>
</tr>
<tr>
<td>Serum phosphorus</td>
<td>1.07 mmol/l</td>
<td>0.98–1.3</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>140 U/l</td>
<td>36–120</td>
</tr>
<tr>
<td>Protoproline</td>
<td>70 g/l</td>
<td>65–75</td>
</tr>
<tr>
<td>Creatinine</td>
<td>91 μmol/l</td>
<td>45–90</td>
</tr>
<tr>
<td>25 OH vitamin D</td>
<td>4 ng/ml</td>
<td>10–35</td>
</tr>
<tr>
<td>Parathyroid hormone</td>
<td>27 ng/l</td>
<td>10–65</td>
</tr>
<tr>
<td>g-l protein</td>
<td>5.70 ng/ml</td>
<td>4–9</td>
</tr>
<tr>
<td>Antiphospholipid antibody</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Blood count</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td>5 mg/l</td>
<td>0–10</td>
</tr>
<tr>
<td>ESR</td>
<td>21 mm/1st h</td>
<td>5–15</td>
</tr>
<tr>
<td>Thyroid hormone</td>
<td>normal</td>
<td></td>
</tr>
</tbody>
</table>

CRP=C reactive protein, ESR=Erythrocyte sedimentation rate.

Figure 1 Magnetic resonance imaging of the pelvis showing on the left part of the sacrum a high signal intensity on T2 weighted sequences.

No endotoxin detected in plasma of patients with ankylosing spondylitis

Endotoxin has long been known to be an important virulence factor for Gram negative bacteria. It is chemically classified as lipopolysaccharide (LPS) and it is one of the major constituents of the outer membrane of Gram negative bacteria. This molecule is also known to be responsible for many injurious effects of Gram negative bacterial infections and thus is clinically important.1

The pathogenesis of ankylosing spondylitis (AS) is still unknown. A microbial aetiology has been suggested for this disease.1 In the present study we examined the plasma of 28 hospital AS patients (eight females, 20 males; mean age 43 years (range 26–62)); mean erythrocyte sedimentation rate 22 mm/1st h (range 5–64) and the mean CRP value 12 mg/l (range 0–37) from the Rheumatism Foundation Hospital, Heinola, Finland for the presence of endotoxin. The mean (SD) duration of the disease was 14.5 (9.0) years: less than five years for three patients, 5-10 years for nine patients, and more than 10 years for 16 patients.

Blood samples were taken by the Vacturer blood collection system (Becton & Dickinson Diagnostic Instrument System, Towsen, MD, USA) into Vacturer tubes containing sodium citrate and kept in melting ice until separation of plasma. The samples were centrifuged immediately at 400 g for 10 minutes at +4°C, and plasma carefully removed and stored at −70°C until assay. All equipment was free of endotoxin.

The concentration of endotoxin in plasma was determined by a chromogenic Limulus assay using Coatest kit (Chromogenix AB, Mölndal, Sweden) with a microtitre modification.2 The detection limit was 5 pg/ml; among normal controls, endotoxin values do not exceed this concentration. None of the AS patients had plasma endotoxin concentrations exceeding the level of 5 pg/ml. This is surprising, as increased gut permeability has been found in AS patients3 and consequently gut microbes might easily pass through the mucosa to enter the circulation. The immunological antibody concentrations against LPS of certain enterobacteria in AS patients support this scenario.4 Endotoxaemia may be rapidly transitory, however. Endotoxin could leave the bacterium in AS patients. Consequently, it may be that endotoxin is not present in AS plasma.

The pathogenesis of ankylosing spondylitis is still unknown. A microbial aetiology has been suggested for this disease.1 In the present study we examined the plasma of 28 hospital AS patients (eight females, 20 males; mean age 43 years (range 26–62)); mean erythrocyte sedimentation rate 22 mm/1st h (range 5–64) and the mean CRP value 12 mg/l (range 0–37) from the Rheumatism Foundation Hospital, Heinola, Finland for the presence of endotoxin. The mean (SD) duration of the disease was 14.5 (9.0) years: less than five years for three patients, 5-10 years for nine patients, and more than 10 years for 16 patients.

Blood samples were taken by the Vacturer blood collection system (Becton & Dickinson Diagnostic Instrument System, Towsen, MD, USA) into Vacturer tubes containing sodium citrate and kept in melting ice until separation of plasma. The samples were centrifuged immediately at 400 g for 10 minutes at +4°C, and plasma carefully removed and stored at −70°C until assay. All equipment was free of endotoxin.

The concentration of endotoxin in plasma was determined by a chromogenic Limulus assay using Coatest kit (Chromogenix AB, Mölndal, Sweden) with a microtitre modification.2 The detection limit was 5 pg/ml; among normal controls, endotoxin values do not exceed this concentration. None of the AS patients had plasma endotoxin concentrations exceeding the level of 5 pg/ml. This is surprising, as increased gut permeability has been found in AS patients3 and consequently gut microbes might easily pass through the mucosa to enter the circulation. The immunological antibody concentrations against LPS of certain enterobacteria in AS patients support this scenario.4 Endotoxaemia may be rapidly transitory, however. Endotoxin could leave the bacterium in AS patients. Consequently, it may be that endotoxin is not present in AS plasma.

The pathogenesis of ankylosing spondylitis is still unknown. A microbial aetiology has been suggested for this disease.1 In the present study we examined the plasma of 28 hospital AS patients (eight females, 20 males; mean age 43 years (range 26–62)); mean erythrocyte sedimentation rate 22 mm/1st h (range 5–64) and the mean CRP value 12 mg/l (range 0–37) from the Rheumatism Foundation Hospital, Heinola, Finland for the presence of endotoxin. The mean (SD) duration of the disease was 14.5 (9.0) years: less than five years for three patients, 5-10 years for nine patients, and more than 10 years for 16 patients.

Blood samples were taken by the Vacturer blood collection system (Becton & Dickinson Diagnostic Instrument System, Towsen, MD, USA) into Vacturer tubes containing sodium citrate and kept in melting ice until separation of plasma. The samples were centrifuged immediately at 400 g for 10 minutes at +4°C, and plasma carefully removed and stored at −70°C until assay. All equipment was free of endotoxin.

The concentration of endotoxin in plasma was determined by a chromogenic Limulus assay using Coatest kit (Chromogenix AB, Mölndal, Sweden) with a microtitre modification.2 The detection limit was 5 pg/ml; among normal controls, endotoxin values do not exceed this concentration. None of the AS patients had plasma endotoxin concentrations exceeding the level of 5 pg/ml. This is surprising, as increased gut permeability has been found in AS patients3 and consequently gut microbes might easily pass through the mucosa to enter the circulation. The immunological antibody concentrations against LPS of certain enterobacteria in AS patients support this scenario.4 Endotoxaemia may be rapidly transitory, however. Endotoxin could leave the bacterium in AS patients. Consequently, it may be that endotoxin is not present in AS plasma.

The pathogenesis of ankylosing spondylitis is still unknown. A microbial aetiology has been suggested for this disease.1 In the present study we examined the plasma of 28 hospital AS patients (eight females, 20 males; mean age 43 years (range 26–62)); mean erythrocyte sedimentation rate 22 mm/1st h (range 5–64) and the mean CRP value 12 mg/l (range 0–37) from the Rheumatism Foundation Hospital, Heinola, Finland for the presence of endotoxin. The mean (SD) duration of the disease was 14.5 (9.0) years: less than five years for three patients, 5-10 years for nine patients, and more than 10 years for 16 patients.

Blood samples were taken by the Vacturer blood collection system (Becton & Dickinson Diagnostic Instrument System, Towsen, MD, USA) into Vacturer tubes containing sodium citrate and kept in melting ice until separation of plasma. The samples were centrifuged immediately at 400 g for 10 minutes at +4°C, and plasma carefully removed and stored at −70°C until assay. All equipment was free of endotoxin.

The concentration of endotoxin in plasma was determined by a chromogenic Limulus assay using Coatest kit (Chromogenix AB, Mölndal, Sweden) with a microtitre modification.2 The detection limit was 5 pg/ml; among normal controls, endotoxin values do not exceed this concentration. None of the AS patients had plasma endotoxin concentrations exceeding the level of 5 pg/ml. This is surprising, as increased gut permeability has been found in AS patients3 and consequently gut microbes might easily pass through the mucosa to enter the circulation. The immunological antibody concentrations against LPS of certain enterobacteria in AS patients support this scenario.4 Endotoxaemia may be rapidly transitory, however. Endotoxin could leave the bacterium in AS patients. Consequently, it may be that endotoxin is not present in AS plasma.
MATTERS ARISING

TREATMENT WITH ETIDRONATE FOR MEN WITH IDIOPATHIC OSTEOPOROSIS

In a recent overview of current and potential future drug treatments for osteoporosis, the therapies for osteoporosis in men were discussed briefly. Osteoporosis in men is a heterogeneous disease of which 50% of the cases are classified as idiopathic osteoporosis (IOP). Long term data on treatment of men with IOP are not yet available.

In an uncontrolled open study of 22 white men with IOP, we have studied prospectively, the effect of a two year treatment with cyclic etidronate (400 mg/d during two weeks every three months) and calcium (500 mg/d during 10 weeks every three months). All patients were extensively screened to exclude any causes of secondary osteoporosis, such as hypogonadism and hypercalcuria, or any other risk factors. Liver function tests were normal in all patients and there was no excessive alcohol consumption either. Bone mineral density (BMD) measurements were performed every six months in the lumbar spine (L2-L4) and in the femoral neck, using dual energy x ray absorptiometry. Precision was <1% in the spine and <2% in the femoral neck. Results are expressed as mean (SEM). Per cent changes from baseline were analysed by a paired t test. Patients with vertebral fractures or a T score of <-2 in the lumbar spine, or both were included (a T score of -1 being the number of standard deviations from the mean bone density of young healthy controls). Mean (SD) age of the patients was 56 (2) years. Seventeen patients showed fractures of vertebrae (one fracture in seven patients and ≥ two in 10 patients) and 11 patients of the appendicular skeleton (one fracture in eight patients and ≥ two in three patients).

Mean T score was -3.2 (0.3) (range -5.4 to -0.4) in the spine and -2.8 (0.2) (range -5.0 to -0.5) in the femoral neck. After two years of treatment with cyclic etidronate, intention to treat analysis indicated an increase in BMD of +7.3 (1.1)% in the spine (p<0.001) and of +2.4 (1.2)% in the hip (p<0.05) (fig 1). The increase of BMD in the spine was similar if patients with spinal fractures (n=8) were excluded (+7.9 (2.0), p<0.01).

The significant increase of BMD in the spine during cyclic etidronate therapy is comparable to the treatment effect in postmenopausal osteoporosis. This is the first study to indicate that cyclic etidronate can significantly increase BMD in the hip of men with IOP and substantial bone loss.

This study suggests that cyclic etidronate may be valuable in men with IOP, although double blind controlled prospective studies, with long term follow up are necessary to adequately assess this. In addition, whether cyclic etidronate will beneficially influence fracture rates in men will probably remain unknown, as large groups of patients are required to study this effect and as osteoporosis is less frequent in men than in women.

PIET GEUSENS JOHAN VANHOOF JEF RAUS
Dr L Willems-Instituut, Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium
JAN DEQUEKER JOS NIJS JO JOLLY
Arthritis and Metabolic Bone Disease Research Unit, K U Leuven, Belgium

Correspondence to: Dr P Geusens.


FINGER DROP IN A PATIENT WITH RHEUMATOID ARTHRITIS

I wish to comment on the case report by McDonald and Smith. Although the authors report that a tomographic arthrogram showed no cystic extension of the joint capsule, the two figures are almost identical with those previously seen in antecubital cysts in rheumatoid arthritis. These ‘cysts’ are coronaries to the popliteal cysts and are generally missed in physical examinations because the bulge they produce often disappears into the fleshy part of the forearm. Clearly, they represent an escape for the effusion in a joint distended by severe synovitis and its products. The proximity of major nerves puts them at risk, as the paper by McDonald and Smith shows.

GEORGE E EHRlich
One Independence Place -1101
241 South Sixth Street
Philadelphia, Pennsylvania 19106-3731, USA

Authors’ reply

We thank Dr Ehrlich for his interest in our case report of a patient with a posterior interosseous nerve lesion, secondary to rheumatoid arthritis with synovitis of the elbow joint. We were not aware of his papers describing antecubital cysts in rheumatoid arthritis but, as our case was mainly an illustration of an unusual compressive neuropathy rather than a description of synovial cysts of the elbow joint, we would not have included the topic of his paper in our literature search. We agree that there is a similarity between the arthrograms in Dr Ehrlich’s paper and that illustrated in our paper. Our case reinforces the conclusions of Dr Ehrlich’s paper 23 years ago that antecubital cysts are relatively common, are frequently overlooked, and should be actively sought when a patient with rheumatoid arthritis presents with symptoms suggestive of a compressive neuropathy in the forearm. We hope that our case report and Dr Ehrlich’s letter will remind rheumatologists to consider this potentially treatable cause of upper limb disability in patients with rheumatoid arthritis.

M D SMITH
S P MCDONALD
Department of Medicine,
Flinders Medical Centre,
South Road, Bedford Park,
South Australia 5042