Eosinophilic fasciitis in a father and son

Eosinophilic fasciitis is a rare syndrome consisting of: (1) localised skin involvement; (2) pronounced thickening of the subcutaneous fascia; (3) absence of visceral changes and Raynaud's phenomenon; (4) peripheral blood eosinophilia, hypergammaglobulinaemia raised ESR and (5) beneficial response to steroids. Some authors believe it is a variant of scleroderma whilst others believe it to be a disease of its own. 

We report two cases of eosinophilic fasciitis occurring in a father and son with clinical and laboratory evidence of the disease, presenting nineteen years apart.

Patient 1, a 19 year old man, presented in 1969 with a one year history of aching in the small joints of his hands and feet and tightness of the skin over his forearms and legs. Physical examination revealed board-like skin over the limbs, hands and trunk. His ESR was raised, being 25 in the first hour and his white cell count was 25 x 10^9/dl with 80% eosinophils. The SGOT was normal and an extensive search for occult parasites was negative. He has normal chest radiograph and barium swallow.

A full thickness skin biopsy was performed and this was reported to show changes of dermatomyositis. Review of the biopsy was diagnostic of eosinophilic fasciitis. It showed broad sheets of collagen extending across and deep into the subcutaneous fat with numerous areas of inflammation. The infiltrates consisted of plasma cells, lymphocytes and eosinophils. Similar extensive infiltrates were found throughout the fascia.

A diagnosis of 'dermatomyositis with scleroderma' was made and the patient was started on prednisolone 45 mg daily. The skin tautening rapidly improved and the peripheral eosinophilia resolved. His prednisolone was withdrawn after three years and when seen recently his skin was normal.

Patient 2 had two sons, one of whom has coeliac disease (tissue type: HLA A3, A32, B8, B35, Bw6, CW4, CW7). The other present in July 1988 at the age of 14 years with a six month history of stiffness of his fingers and tightness of the skin over his arms and legs. There was no history of Raynaud's phenomenon and no problems with his swallowing, chest or digestion.

On examination he had woody, tautened oedematous skin over his arms and legs. He had flexion contractures of the MCP joints bilaterally and his elbows and wrists were immobile.

Laboratory tests showed an Hb 13 g/dl, wcc 8.7 x 10^9/dl with 16% eosinophils, ESR 16 mms per hour. His electrolytes, C3, C4 and fibrinogen levels were normal. His IgG was 20-5 g/l, IgA and IgM normal. ANA and anti-ScI 70 were negative, chest and hand radiographs were normal.

A full thickness skin biopsy revealed a normal epidermis; almost all the glandular elements were tightly bound with collagen.

There was local infiltration by lymphocytes and plasma cells. The fascia was infiltrated with numerous lymphocytes and occasional plasma cells. The cells extended between the muscle fibres—all the changes suggested eosinophilic fasciitis.

He was started on prednisolone 30 mg daily and clinically he improved together with the disappearance of his eosinophilia and hypergammaglobulinaemia. He is presently on prednisolone 4 mg alternate days but his skin has not yet completely returned to normal.

HLA typing was performed on the father and son, which showed the son inherited A3, B52, Cw null haplotype from his father.

The two patients described appear to be the first cases of eosinophilic fasciitis involving a father and son. Both had the characteristic features and responded to corticosteroids. The father initially cluded diagnosis as the disease had not yet been described by Shulman.

The only other familial cases of eosinophilic fasciitis is the report of siblings with identical HLA genes. Our patients, however, had completely different haplotypes from those described.

We feel eosinophilic-fasciitis probably has a multifactorial aetiology with a combination of genetic and environmental factors playing a role.
large joints of the lower extremity. Synovial fluid eosinophilia has been noted, but only infrequently. Although the arthritis is self-limited in most patients, it often recurs and may eventually become chronic. In contrast, to RA associated with bacterial infections, the majority of patients have no constitutional symptoms or other signs of filariasis. In this patient, the clinical picture was most consistent with ReA associated with filariasis. Although she did have other parasites in her stool, their association with the arthritis is mitigated against by the lack of gastrointestinal symptoms as well as the failure to respond to specific therapy.

Eosinophils are infrequently noted in the synovial fluid. When present, they typically constitute less than 2% of leukocytes. More pronounced synovial fluid eosinophilia has been reported in association with various rheumatological, infectious, allergic and malignant diseases. However, absolute synovial eosinophil counts above 10,000/mm³ are exceedingly rare, having been reported only in the cases of idopathic transient eosinophilia, and two cases of Lyme disease.

It might be unexpected for eosinophils to be associated with ReA. The antigen specific T cells in the synovium of patients described to date have been predominantly of the T_{H1} phenotype, which secretes primarily IL-2 and IFN-γ. On the other hand, eosinophils are more commonly associated with activation of T cells of the T_{H2} phenotype, which produce primarily IL-4 and IL-5. Because IL-5 promotes the differentiation as well as the survival of eosinophils, it may be critical to conditions associated with eosinophilia.

This report demonstrates that ReA associated with filariasis may be associated with massive synovial eosinophilia. This association raises the hypothesis that in some instances, particularly those associated with eosinophilia, ReA might be mediated by T cells of a T_{H2} phenotype.

CHARLES LUBIANCA KOHEM
SANDRA VASQUEZ KRISTIANSEN
ARUTHURA FRANCIS KAVAUGH
Rheumatic Diseases Division,
Department of Internal Medicine,
The University of Texas,
Southwestern Medical Center,
5323 Harry Hines Blvd,
Dallas, Texas 75235-8884,
USA

GABBY GIDEON NESHER
VIRGINIA K WILSON
TERRY L MOORE
THOMAS G O'SBORNS
VAUGHN E HANNA
Saint Louis University School of Medicine
1402 South Grand Boulevard
R215 Dotty Hall
Saint Louis, MO 63104, USA

Antiperinuclear and anti-RA33 antibodies in juvenile chronic arthritis

Gabay et al recently reported results of their study on the occurrence of antiperinuclear (APF), anti-keratin, and anti-RA33 antibodies in juvenile chronic arthritis (JCA). These data differ from ours, regarding APF and anti-RA33. We reported that a third of patients with juvenile rheumatoid arthritis (JRA) were tested positive for APF in an undiluted serum, compared to only 1-6% in this study. Although several hypotheses may explain this difference, we believe that a major factor was the difference in criteria used to define APF positivity. We have found that identifying five positive cells on a slide is sufficient to define positivity without decreasing the specificity of APF assay significantly in children with JRA. Reviewing our data, we found that using the criteria of Gabay et al (that is, APF positivity only when 10% or more of cells are positive), 'APF positivity' was detected in only 8% of our patients.

It is unclear whether this figure describes the 'true positivity' of APF in JRA. We believe that using less-stringent criteria would enable us to detect more APF-positive cases without lowering the specificity of the test in children with JRA.

The data by Gabay et al and ours were also at variance regarding anti-RA33 occurrence. Although the rates were similar in patients with polyarticular disease, we found that 67% of pauciarticular JRA patients had anti-RA33, compared with only 2% in the study by Gabay et al. Again, many hypotheses may be entertained to explain this difference, such as the sensitivity of the test, differences in populations, etc. We believe it may reflect the differences in defining JCA and JRA, which is most noticeable in cases of pauciarticular-onset.

In conclusion, these major differences in the occurrence of APF and anti-RA33 in children with chronic arthritis may be 'artificial'. It emphasises the need to form universal criteria regarding the definition of positivity of APF in children, and classification of chronic arthritis in childhood.

AUTHOR'S REPLY: Nesher et al suggest that the low prevalence of antiperinuclear and anti-RA 33 antibodies in our study was mainly related to the criteria used to define APF positivity and a subset of patients with pauciarticular onset juvenile chronic arthritis (JCA). Our assay for APF has already been validated in patients with rheumatoid arthritis. The prevalence of APF was in accordance with those published elsewhere and the specificity was higher than 90%. We therefore think that the low prevalence of APF in our study does not reflect a lack of sensitivity of our assay. In addition, other investigators who did not use the methodology as ours, also found a very low prevalence of APF in a large cohort of JCA patients. Finally, it should also be mentioned that the percentage of APF positive sera found by Nesher et al was not so impressive, as only one third of their patients had a positive result with their assay. In addition, the occurrence of positive APF falls to 11% when sera were diluted 1:10.

The specificity of APF for the diagnosis of RA is well accepted; however, positive results have also been reported in other conditions. We and others have demonstrated that considering a positive result when 10% or more of the cells of APF positive, increases the specificity without significantly decreasing the sensitivity of the test. Nesher et al compared their results in JCA with those found in sera from normal controls and found no false positivity. They also reported positive results in up to 17% of the children with systemic lupus erythematosus (SLE). In our opinion their results in JCA should also be compared to those found in the patients with SLE to assess the specificity of their assay.

With the exception of a subset of patients with RF-positive polyarticular onset, we found that prevalence of anti-RA 33 antibodies was rather low in JCA patients. Again, we already validated our assay in previous studies. Nesher et al suggest that the low percentage of anti-RA 33 antibodies in the sera from our children with pauciarticular onset reflects the difficulty in defining this subset of patients. We do not agree with them, because the criteria for pauciarticular onset JCA in the ACR or EULAR/WHO classifications are almost the same. This subset of patients includes a group of young children—mainly girls—with four or less joints affected at onset, a high prevalence of positive antinuclear antibody (ANA) test and ocular complications. As described in our paper, the age of onset, articular features, sex ratio, and percentage of positive ANA test clearly show that our children fulfill both the European and American criteria for the classification of pauciarticular onset JCA (or JRA). The evolution of articular features may, however, vary in this subgroup of patients. Some have persistent pauciarticular involvement, whereas others convert to juvenile idiopathic arthritis. The high prevalence of positive anti-RA 33 antibodies reported by Wilson et al could be related to the heterogeneity of this subset of JCA and/or to the few cases included in their study (12 patients).

Although anti-RA 33 antibodies have previously been reported to be highly specific for the diagnosis of RA, we also found this antibody in 3% of our patients with other conditions, such as mixed connective tissue disease and SLE. Unfortunately, Wilson et