Enthesitis of the ligamentum teres during ankylosing spondylitis: histopathological report

We were interested to read the article by Inoue et al. on ossification of the medial acetabular floor, including the ligamentum teres as a possible mechanism of lateral subluxation in coxopathy associated with ankylosing spinal hyperostosis. A few years ago we saw a patient suffering from ankylosing spondylitis (AS) with right coxitis including inflammatory enthesopathy of the ligamentum teres (ligamentum capitis femoris).

A 57 year old man with a five year history of a painful right hip was first seen at the rheumatology clinic in 1976, when the diagnosis of AS was made (HLA B27 was present). Anteroposterior radiography of the pelvis demonstrated joint space narrowing in the right hip, sclerosis and new bone formation on the right acetabular rim, enthesophytes of the femoral head, and an ankylosis in the sacro-iliac joints. Due to persistent pain and major disability, an arthroplasty was performed on the right hip.

On opening the capsule, the synovium was inflamed around the ligamentum capitis femoris although there was no obvious pannus the articular cartilage was considerably ulcerated at the femoral head. Histological examination showed an intense vascular proliferation in the central area of attachment of the femoral head ligament to the fovea capitis, especially in the deep subchondral perivascular area (figure). Lymphoplasmocytic cells had spread along the proliferating vessels which dissociate the vertical collagen fibres at the ligamentum teres attachment. In the narrow spaces surrounding the damaged area there was evidence of chondrocyte proliferation. Ossifying enthesitis was also present on the attachment of the capsule in the acetabular labrum.

Published reports are scant concerning the histopathology in the early stage of AS. Nevertheless, several papers have underlined the role of enthesis in the pathogenesis of AS and related spondyloarthropathies. Ossifying enthesopathies on the great trochanter and capsular enthesophytes are common features in AS and Forester’s disease with the resulting tendency to ankylosis of the hip.

Enthesopathies include all changes, whether traumatic, degenerative, metabolic or inflammatory of enthesis. As enthesopathies usually produce ossification, they are very useful diagnostically and nosologically, especially when they are diffuse or multiple. The most extreme example of metabolic enthesopathy is diffuse idiopathic skeletal hyperostosis (DISH, more commonly known as Forester’s disease). Conversely, AS, which is the archetype of spondyloarthropathies, is the more classic inflammatory enthesopathy.

The most distinctive feature of the natural history of ossifying enthesopathies, suggests that during AS and DISH, enthesopathy of the ligamentum capitis femoris, may initiate intra-articular involvement, as observed in the knee with cruciate ligaments. The presence of an intra-ligamentary artery probably enhances its proclivity to promote ossicles during AS.

P. GILLET
P. PERE
J Y JOUZEAU
J FLOQUET
P. GILLET

Department of Rheumatology and Pathology,
URA CNRS 1238, Faculté de Médecine, BP 184,
54505 Nancy, France


Plasma viscosity in giant cell arteritis

We read with great interest the paper by Gudmundsson et al.1

It was interesting that at follow up there was evidence that plasma viscosity and the erythrocyte sedimentation rate (ESR) paralleled clinical findings and predicted flare ups better than other variables.

In previous studies, we have tried to establish a definition of biological parameters for monitoring giant cell arteritis (GCA) and polymyalgia rheumatica (PMR).2 Our studies have shown that in patients with GCA or PMR there is a positive correlation between ESR, haptoglobin and o로서momucoid during the acute phase of the disease before treatment.

Under corticosteroid treatment, a correlation persists between clinical symptoms and ESR. But a discrepancy exists between ESR and acute phase proteins: haptoglobin and o로서momucoid. These two proteins remain elevated while clinical symptoms and ESR have returned to normal. In individual cases this elevation is linked to a persistence of the disease and could lead to a possible flare up when attempting to taper corticosteroid treatment. Moreover, an elevation of o로서momucoid and haptoglobin can signal a clinical flare up.

Our data suggest that acute phase protein elevation that is present in spite of improvement in clinical symptoms and ESR is a contraindication for tapering corticosteroid doses or for withdrawing treatment.

J B PAOLAGGI
Service of Rheumatology,
Hôpital A. Paris, 9 avenue Charles de Gaulle, 92100 Boulogne, France

D CHAOUAT
Service of Internal Medicine, Fondation A de Rothschild, 25-29 rue Mansart, 75019 Paris, France

Rheumatoid nodules

The recent Leader on rheumatoid nodules by Veys and De Keyser1 gave a very interesting and useful review of the subject. When I was working as a medical registrar with Dr Bernard Schlesinger at the Royal Northern Hospital in pre-war London, one of my tasks was to carry out routine nodule counts on children with rheumatic fever (a not uncommon disorder in those days). Dr Schlesinger had found that these nodules, particularly in younger children with more serious disease, carried a worse cardiac prognosis.2 At that time there was considerable interest in the possible relation of rheumatic fever to rheumatoid arthritis. A recent report by Fink3 considers post-streptococcal reactive arthritis to be a form of rheumatic fever, though arthritis or arthralgia is of a more prolonged nature appearing early after infection.

Massell et al4 reported in 1937 that nodules closely resembling those of rheumatic fever could be produced by injecting 3 cc of a patient’s blood subcutaneously into the soft tissue of an elbow followed by rubbing the injected area six times daily; nodules appeared in 37 of 82 of their patients (45%). I was unable to confirm these findings1 in 40 children with rheumatic fever in acute or convalescent stages, five children with chronic juvenile arthritis (Still’s disease), and 10 adults with rheumatoid arthritis, three of whom had already developed rheumatoid nodules over one elbow. Veys and De Keyser report that rheumatoid nodules are found most commonly at sites of mechanical irritation and friction and we found the same to be true of nodules in rheumatic fever, but could not produce them experimentally.

Considerable interest was shown during the 1930s and 1940s in rheumatoid nodule formation. Collins,6 Parkes Weber2 in the United Kingdom, and Horowitz8 in South Africa had worked and written on the subject, but my efforts to reproduce them experimentally failed miserably!