antigen was detected as long as three and 17 years after yersinia infection, suggesting that the microbial structures can persist in the tissues. The antigens are found in mesenteric and cervical lymph nodes and in the skin, and, during the acute phase of infection, in peripheral blood cells of almost every patient, including patients who will not develop reactive arthritis. Thus the presence of antigens in the blood provides an explanation for extensive antigen dissemination, but not for the development of reactive arthritis and other clinically significant extraintestinal manifestations.

Possibly, extraintestinal symptoms derive from inflammatory hyperreactivity of the patient to the antigenic stimulus. It has been reported that neutrophils of HLA-B27 positive subjects without a history of yersinia infection and of patients with previous yersinia reactive arthritis show enhanced neutrophil migration in response to a chemotactic stimulus in vitro and in vivo, as do patients with ankylosing spondylitis, at least in vitro. Furthermore, neutrophils from patients who have a history of severe acute yersinia triggered reactive arthritis, or with sequelae, show increased generation of oxygen radicals in vitro. NAP-1/IL-8 stimulates neutrophil chemotaxis and oxygen radical production and might thereby contribute to the neutrophil hyperactivity. In conclusion, the results show that both control and lipopolysaccharide induced NAP-1/IL-8 production by monocytes was similar in subjects with past yersinia arthritis or enteritis and unaffected subjects, and did not differ from HLA-B27 positive and negative subjects. This seems to rule out an aberrant function of monocytes, at least for the synthesis and release of NAP-1/IL-8, one of their major products, in the triggering of reactive arthritis.

We thank Heidi Mühlthaler, Paula Rahikainen, and Eime Vierstraaten for technical help. The study was supported by grants from the Yrjo Jahnsson Foundation, Helsinki and the Finnish Cultural Fund, Helsinki, Finland.


Hand radiography: an indicator of upper cervical rheumatoid arthritis

Sir: One of the most dangerous complications of rheumatoid arthritis is upper cervical disease, which can cause sudden deaths and serious neurological problems. In previous surveys, reported prevalences of atlantoaxial subluxations range between 19 and 71% according to the radiographic and radiological techniques used. Although direct radiographic investigations can show atlantoaxial subluxations, computed tomography (CT) and magnetic resonance imaging are the best procedures for detecting the myelopathy and bone soft tissue pathologies in this region. As these methods are expensive, however, the question then has to be asked: which patients with rheumatoid arthritis should be evaluated by CT or magnetic resonance imaging?

Conlon et al were the first group reporting a relation between atlantoaxial subluxations and severe peripheral joint destruction. Later, reports from Stevens et al and Rasker and Cosk1 supported this view. We attempted to determine if the CT findings correlate with hand radiographic findings or not. We studied 40 patients chosen randomly from 138 outpatients at Helsinki University Hospital, diagnosed as having rheumatoid arthritis according to the 1987 revised criteria of the American Rheumatism Association. Anteroposterior and lateral radiographs were taken, then we carried out CT of the cranio cervical junction in the axial and coronal planes with the patient’s neck in maximum flexion and neutral position by using a CT scan with a 3–4 mm section. We noticed not only atlantoaxial subluxations but also erosions of the odontoid process or atlas arcus, thickness of the ligaments, dis- tension of the synovial cavities, and ligament ruptures.

Of the 40 patients studied, 12 had completely normal or slightly abnormal (periarticular soft tissue swelling, periarticular bone sclerosis, slight joint space narrowing) hand radiographs. In this group there was no evidence of upper cervical disease or atlantoaxial subluxations in CT scans, except in one patient who had a slightly thicker than normal atlantoaxial subluxation. Among the remaining group of 28 patients, who had erosions and marked joint space narrowing in hand radiographs, we found CT abnormalities of all kinds in 25 and atlantoaxial subluxations in 19 patients. As expected, atlantoaxial subluxations were associated with severe and mutilating abnormalities in the hand radiographs. We suggest that if the hand radiographs are normal, upper cervical spine assessments should not be expected in rheumatoid arthritis and there is no need for sophisticated examination of this region.

M NAFIZ AKMAN
LILAY DINCER
8 colleague 5880 sokak 22/6
Emek 06510
Ankara
Turkey


Positive antinuclear antibodies in malignancies

Sir: I read with interest the recent case report of a patient with Raynaud’s phenomenon and positive antinuclear antibodies in a malignancy.1 I would like to report two additional cases of malignancies, which were associated with Raynaud’s phenomenon and a high titre of antinuclear antibodies, and make some comments on the subject.

CASE 1

A 61 year old man presented for rheumatology evaluation with a six month history of arthralgias in both hands and a six week history of severe Raynaud’s phenomenon. Eight months earlier he admitted to having been hospitalised because of hemiparesis of his left arm and leg, which lasted a couple of days with fever of 39–35°C. He was checked thoroughly in a neurological and a medical clinic with no explanation. Later on, due to a neurological deficit and the fever was found. Finally, he was suspected to have an unknown vasculitis and given high dose steroids, which relieved his symptoms. Antinuclear antibodies were negative at that time. When he was referred to

Ann Rheum Dis: first published as 10.1136/ard.51.4.573-a on 1 April 1992. Downloaded from http://ard.bmj.com/ on July 21, 2023 by guest. Protected by copyright.