Inactivation of the elastase inhibitory activity of α₁ antitrypsin in fresh samples of synovial fluid from patients with rheumatoid arthritis*

Keith Chidwick, Paul G Winyard, Zhi Zhang, Adrian J Farrell, David R Blake

Abstract
The proteinase inhibitory ability of α₁ antitrypsin was measured in 23 samples of rheumatoid arthritis synovial fluid, eight osteoarthritis synovial fluids and nine normal control serum samples. For each sample a detailed kinetic analysis was performed with porcine pancreatic elastase as the target proteinase. Samples were stored for less than 24 hours at 4°C before analysis, which does not significantly alter the proportion of inactive α₁ antitrypsin. In rheumatoid synovial fluid the elastase inhibitory ability was disproportionately reduced relative to the immunochemically determined concentrations of α₁ antitrypsin.

α₁ antitrypsin is the main serine proteinase inhibitor in human plasma. One of its major physiological roles is to protect connective tissue from degradation by elastase. Elastase, which is released in large amounts by neutrophils at sites of inflammation, has a wide substrate specificity, including collagen and proteoglycans. It has therefore been implicated in cartilage damage within the rheumatoid joint.

Normally free elastase is inhibited by α₁ antitrypsin owing to the rapid formation of a 1:1 complex, which slowly breaks down to yield elastase and inactive α₁ antitrypsin. In inflammatory conditions, however, stimulated neutrophils can inactivate the elastase inhibitory ability of α₁ antitrypsin both proteolytically, by releasing lysosomal enzymes, and oxidatively, by releasing reactive oxygen species. Furthermore, in the arthritic joint the cartilage surface itself may interfere with the interaction between α₁ antitrypsin and elastase. It was suggested that because α₁ antitrypsin carries a net negative charge at neutral pH it has a relatively poor ability to diffuse into the negatively charged cartilage. In contrast, elastase is positively charged. In rheumatoid arthritis the combination of these effects might permit elastase to degrade proteins within the cartilage matrix, even though α₁ antitrypsin is normally present in molar excess over elastase in the synovial fluid.

Previous studies of synovial fluid samples from patients with rheumatoid arthritis concluded that α₁ antitrypsin is both cleaved and oxidised, leading to substantial inactivation. These studies, however, were conducted on samples stored frozen at −10°C, −20°C, or at an unspecified temperature. Such storage of human extracellular fluids leads to both oxidation and proteolysis of constituent proteins, resulting in a loss of functional activity. This suggests that earlier studies of α₁ antitrypsin in rheumatoid synovial fluid might have been affected by changes induced by storage. Furthermore, in the previous studies the functional activity of α₁ antitrypsin was assayed using a single active site titration of trypsin for each sample. To consider these problems we reassessed the functional activity of α₁ antitrypsin in fresh samples, performing a detailed kinetic analysis of inhibitory activity towards porcine pancreatic elastase.

Results and discussion
Normal serum contained 3.74 (1.50) mean (SD) mg/ml α₁ antitrypsin. As expected, the
immunochemically determined concentration of α₁ antitrypsin was significantly raised in rheumatoid synovial fluid (4.29 (1.9) mg/ml) compared with osteoarthritic synovial fluid (2.17 (0.81) mg/ml; p<0.001). The number of moles of α₁ antitrypsin required to inhibit one mole of elastase (figure) was also significantly higher in fresh rheumatoid synovial fluid than in fresh normal control serum samples (p<0.001), indicating a lower specific elastase inhibitory activity equivalent to 41% inactivation of α₁ antitrypsin. The α₁ antitrypsin in osteoarthritic synovial fluid also seemed to be partially inactivated (25%), though this was not statistically significant.

There was a relatively large scatter in the specific elastase inhibitory activity of the rheumatoid synovial fluid samples (figure). Specific elastase inhibitory activity was correlated with α₁ antitrypsin concentration for each of the three groups of samples. For the rheumatoid synovial fluid group Spearman’s rank correlation coefficient (rs) was 0.46 (p<0.05); there was no significant correlation in either the osteoarthritic synovial fluid group (rs=0.60) or the normal serum group (rs=0.06). The significant correlation in the rheumatoid synovial fluids implies that a more severe inflammatory response will result in both a higher concentration of immunoactive α₁ antitrypsin and a greater inactivation of α₁ antitrypsin by reactive oxygen species and lysosomal proteinases released by infiltrating neutrophils.

Our results obtained with fresh rheumatoid synovial fluid support the earlier suggestions5-6 that substantial inactivation of α₁ antitrypsin occurs in vivo. The results reported here are also consistent with our earlier observation that a substantial proportion of α₁ antitrypsin is present in a cleaved form in fresh rheumatoid synovial fluid.11 As storage induces the inactivation of α₁ antitrypsin it might have been expected that the concentrations of inactive α₁ antitrypsin in the present study would be lower than those found previously for stored samples (15%-30%),8,9 but we found a higher proportion of inactive α₁ antitrypsin in rheumatoid synovial fluid.

This observation may be explained by further important differences between this study and earlier ones. Firstly, the target proteinase used in our assay of α₁ antitrypsin activity was porcine pancreatic elastase, whereas other workers used trypsin. Secondly, we used several dilutions of the fluids containing α₁ antitrypsin to perform a detailed kinetic analysis, whereas the trypsin assay was by a single active site titration. Finally, this difference might be attributable to a varying severity of inflammation in the patient groups studied because, as mentioned above, our results imply that the severity of inflammation correlates with the extent of α₁ antitrypsin inactivation.

We conclude that substantial inactivation of α₁ antitrypsin occurs within the rheumatoid joint which, in combination with the negative charge repulsion between α₁ antitrypsin and cartilage, could result in discrete areas of α₁ antitrypsin deficiency and hence elastolytic activity leading to cartilage damage.

We thank Professor R W Carrell and Dr P Pemberton for helpful advice and discussions. This work was supported by the Arthritis and Rheumatism Council, the British Technology Group, and the British Council.