Partial purification and characterisation of a synovial fluid inhibitor of osteoblasts

R A Hazelton, R Vedam, P P Masci, A N Whitaker

Abstract
A polypeptide inhibitor of osteoblast proliferation is described which occurs in synovial effusions of patients with rheumatoid arthritis. Partial purification of the inhibitor showed a molecular weight of approximately 81 000 by gel electrophoresis. This polypeptide seems to be unique as no inhibitor of osteoblasts of similar molecular weight has been previously described in rheumatoid synovial effusions.

Osteoporosis is well recognised in association with rheumatoid arthritis (RA). Generally it is regarded as being of two types, periarticular and generalised osteoporosis. The factors responsible for generalised osteoporosis in RA are multiple and include those resulting in decreased bone formation and enhanced bone loss. Assessment of bone disease in RA is made difficult by the effects, not only of the underlying disease, but also, as the disease progresses, of disuse due to loss of mobility, drug treatment, which may affect bone metabolism, and in some cases poor nutrition. Juxta-articular loss of bone density may be evident within months after disease onset and is recognised as a useful diagnostic feature of RA. This latter form of osteoporosis seems to be mediated by local disease mechanisms.

Studies with isolated bone cell populations have found that many well characterised bone resorbing hormones have receptors on osteoblasts and affect osteoblast function. These hormones include parathyroid hormone, prostaglandin E, 1,25-dihydroxyvitamin D3, and epidermal growth factor. Human tumour necrosis factors α and β secreted by monocyte-lymphocyte preparations have been found in bone organ cultures to stimulate bone resorption and inhibit bone formation. Fibroblast derived growth factors may also inhibit osteoblast function. To learn more about the mechanisms of osteoporosis complicating RA the effect of synovial fluid on isolated osteoblasts was studied. A polypeptide which is inhibitory towards osteoblasts has been partially purified and is described below.

Patients and methods
PATIENTS
Synovial fluid was obtained from patients with definite or classical RA as determined by the American Rheumatism Association criteria. Fluids were only obtained during routine diagnostic or therapeutic procedures after informed consent had been given.

MATERIALS
Sephacryl S-200, Phastgels, and Phastgel buffer strips were obtained from Pharmacia, Upssala, Sweden. Diethylaminoethyl (DEAE)-52 cellulose was purchased from Whatman Biochemicals, London. Blue-Sepharose was obtained from Bio-Rad, USA. Acrylamide, methylenebisacrylamide, and sodium dodecyl sulphate were obtained from BDH Chemicals, Poole, England. N,N,N',N'-Tetramethylenediamine and bovine serum albumin were purchased from Sigma Chemical Co, St Louis, Mo, USA. Medium 199 was obtained from Flow Laboratories, Irvine, Scotland and [methyl-3H]thymidine from Amersham, Buckinghamshire, UK. Collagenase (type II) was obtained from Worthington, Ohio, USA. All other chemicals were of the highest purity available.

METHODS
Isolation and culture of bone cells
Bone cell populations were isolated from the calvaria of 3–4 day old mice (Quackenbush) by a modification of a previously described method. Briefly, the calvaria, consisting of frontal and parietal bones, were removed aseptically. They were incubated at 37°C with 5% CO2, with gentle stirring in 5 ml of a sterile enzyme solution consisting of 0·4% collagenase (Worthington type II) and 0·1% bovine serum albumin (Sigma) made up with Medium 199. The initial digestion medium containing freed osteoclast bone cells was decanted and replaced with 5 ml of fresh enzyme solution after 10 minutes incubation at 37°C with 5% CO2. After the second 90 minute incubation the digestion medium containing freed osteoblast cells was collected. After centrifugation in Medium 199 (270 g, 10 minutes) the osteoblasts were counted in a Coulter counter (Coulter Electronics, Hialeah, Florida). The cells were resuspended in Medium 199 and plated at 1·15x10^4 cells/well in 96 well flat bottom plates (1·0 cmx0·6 cm; Flow Laboratories). In some studies the rat osteosarcoma line UMR-106 was used. Lineage of calvarial and UMR-106 cells was checked with alkaline phosphatase staining, and on all occasions dense staining for this enzyme was found.

Controls
With each osteoblast assay appropriate controls were used, including resting cells, human albumin, AB serum, and buffers.

The cells were incubated for 24 hours at 37°C with 5% CO2 before the samples at a 1:12 dilution were added. Osteoblast cultures were
then incubated in quadruplicate with heat treated fetal calf serum together with the test sample. Heat treated fetal calf serum had been previously found to stimulate osteoblasts. After 48 hours of incubation the cultures were pulsed for 18 hours with 37 kBq of [methyl-3H]thymidine per well. The cells were harvested with a Skatron multisample harvester, and the incorporation of [methyl-3H]thymidine was determined by standard liquid scintillation counting techniques. Data were expressed as the percentage inhibition of heat treated fetal calf serum stimulated osteoblasts.

Ion exchange chromatography
Pooled synovial fluid was diluted with 50 mM TRIS-HCl buffer (pH 8.0) at 4°C and was applied to a 2.5 cm x 30 cm column of DEAE-52 cellulose. The column was equilibrated with starting buffer—50 mM TRIS-HCl buffer (pH 7.4) containing 100 mM NaCl. A linear gradient of 0 to 500 mM NaCl (volume = 250 ml) was applied to the column at a flow of 84 ml/h. An LKB fraction collector (Bromma, Sweden) was used to assay fractions for osteoblast inhibition.

Polyacrylamide gel electrophoresis
Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) in a phosphate continuous buffer system (pH 7.4) was carried out as described by Weber and Osborn. Discontinuous PAGE was carried out by the method of Davis. Pharmacia Phastsystem was used to perform discontinuous PAGE and SDS-PAGE. Protein was eluted with TRIS buffer from PAGE gel slices and concentrated with acetone as described by Hames before being applied to PAGE or SDS-PAGE. Molecular weights of marker proteins were phosphorylase b 94 000; albumin 66 500; ovalbumin 43 000; carbonic anhydrase 30 000; trypsin inhibitor 20 000; and lactalbumin 14 000. The gels were stained with a silver stain using the method of Merril.

Blue-Sepharose affinity chromatography
Blue-Sepharose was equilibrated with six changes of starting buffer—50 mM TRIS-HCl buffer (pH 7.0) containing 100 mM KCl. After six washes in buffer and centrifuging at 1230 g for 10 minutes the synovial fluid was diluted 1:2 with starting buffer before being applied to an equal volume of Blue-Sepharose to form a slurry. After six washes with starting buffer by centrifuging at 1230 g for five minutes the bound components were eluted with elution buffer—50 mM TRIS-HCl buffer (pH 7.0) with 1500 mM KCl. Aliquots of unbound and bound fractions were dialysed and tested for osteoblast inhibition.

Results
There was no significant inhibition of tritiated thymidine incorporation (this ranged from 0 to 15% in the many assays performed) or evidence of morphological change by light microscopy with any of the controls used in the osteoblast assay.

ION EXCHANGE CHROMATOGRAPHY
Maximal osteoblast inhibition occurred in fraction P which eluted between 1211 and 1225 ml (fig 1).

GEL FILTRATION
Fraction D eluting between 245 and 259 ml showed the greatest osteoblast inhibition (fig 2).

GEL ELECTROPHORESIS

![Figure 1: Ion exchange chromatography of pooled synovial fluid 8.3 ml, diluted 1:20 with 50 mM TRIS-HCl buffer (pH 8.0), DEAE column (2.5 cm x 30 cm) equilibrated with starting buffer, 50 mM TRIS-HCl buffer (pH 8.0), eluted with a linear gradient of NaCl concentration (0-5 mol/l) 250 ml. Temperature 4°C. Fraction volume 14 ml. ○=A220; ○=percentage inhibition, x, ..., x=salt gradient.](http://ard.bmj.com/Ann Rheum Dis: first published as 10.1136/ard.49.2.121 on 1 February 1990. Downloaded from http://ard.bmj.com/ on May 30, 2022 by guest. Protected by copyright. -- Ann Rheum Dis: first published as 10.1136/ard.49.2.121 on 1 February 1990. Downloaded from http://ard.bmj.com/ on May 30, 2022 by guest. Protected by copyright.)
bands (fig 3b, columns SF and P respectively). Sephacryl S-200 fraction D contained one band with silver staining (fig 3b, column D).

Discussion

This is the first report of an inhibitor of osteoblast inhibition. In the presence of 2-mercaptoethanol three visible bands were seen with the middle band migrating the same distance as albumin (fig 4a, column A). With PAGE one band was found with silver staining (fig 4b, column B).

The table shows the results of the two purification sequences and indicates similar improvements in specific activity over the starting synovial fluid samples.

Light microscopic assessment showed that at least 80% of cells rounded up and developed an intracellular granular appearance and would no longer take up tritiated thymidine after culture with the inhibitor. These appearances were observed with both calvarial osteoblasts and UMR-106 cells. An S-200 enriched preparation of the inhibitor did not cause calvarial cell death as judged by trypan blue dye exclusion.

<table>
<thead>
<tr>
<th>Material</th>
<th>Protein (g/l)</th>
<th>% Inhibition</th>
<th>Specific activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled synovial fluid</td>
<td>110</td>
<td>8</td>
<td>3.6</td>
</tr>
<tr>
<td>DEAE*-52 fraction P</td>
<td>1.17</td>
<td>95</td>
<td>4060</td>
</tr>
<tr>
<td>Sephacryl S-200 fraction D</td>
<td>0.052</td>
<td>98</td>
<td>9800</td>
</tr>
<tr>
<td>Starting synovial fluid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue-Sepharose washed fraction</td>
<td>1.2</td>
<td>49</td>
<td>2042</td>
</tr>
<tr>
<td>PAGE* gel slice</td>
<td>0.05</td>
<td>99</td>
<td>9900</td>
</tr>
</tbody>
</table>

*DEAE = diethylaminoethyl; PAGE = polyacrylamide gel electrophoresis.

The starting synovial fluid was selected after prior assaying to ensure significant inhibition. In the first purification sequence pooled synovial fluid (n=3) was used, whereas in the second sequence fluid from a single patient was used. Albumin showed some inhibition of tritiated thymidine incorporation by osteoblasts, but on a weight for weight basis the inhibitor was over 720 times more active.
osteoblasts described in rheumatoid synovial fluid. The inhibitor significantly decreased tritiated thymidine incorporation of both murine osteoblast and rat osteosarcoma cells and microscopically resulted in morphological changes during culture. The inhibitor is probably a polypeptide of molecular weight 81 000, which under reducing and denaturing conditions consists of two separate bands on gel electrophoresis (figs 3a and b). Known inhibitors of osteoblast function, including tumour necrosis factors α and β (previously called cachectin and lymphotxin respectively), have been shown to inhibit rat bone collagen and non-collagen protein synthesis in vitro. In our report osteoblast inhibitory activity was measured by the incorporation of tritiated thymidine and therefore our results may not be directly comparable with the action of tumour necrosis factor on osteoblasts.

The separation of the inhibitor with Blue-Sepharose was undertaken because of the high concentration of albumin in all fluids studied. Albumin was found to inhibit osteoblasts at high concentration only, with the inhibitor being over 720 times more active on a weight for weight basis. Both purification procedures gave similar improvements in specific activity over starting samples (table). Based on a molecular weight of 81 000 the inhibitor was active at a concentration of 3-3 μmol/l or less.

Studies showed that 57% (17/30) of synovial fluid samples from patients with RA inhibited osteoblast proliferation. At present the biological role of this inhibitor requires further investigation. The possible mechanism of action is uncertain, though according to trypan blue dye exclusion the inhibitor is not toxic to mouse calvarial cells.

This inhibitor could be responsible for the periarthritis osteoporosis often observed in RA. It appears different from previous inhibitors, such as fibroblast growth factors and the tumour necrosis factors α and β. Although fibroblast growth factors increase the number of osteoblastic cells, they may under some conditions directly inhibit osteoblastic function. Tumour necrosis factors α and β show time dependent dual stimulatory and inhibitory effects on bone formation. The molecular weights of these inhibitors are much less than that of the inhibitor found in RA synovial fluid, suggesting that the latter is unique.

The above is a preliminary report of the partial purification of a polypeptide inhibitor of osteoblast proliferation found in rheumatoid synovial effusions. Further work is aimed at defining the structure and function of this inhibitor.

Supported by grants from the Arthritis Foundation of Australia, the Rebecca L Cooper Foundation, and the Mayne benefactor fund of the University of Queensland. The UMR-106 cells were kindly donated by Professor T J Martin of Melbourne, Victoria, Australia.