Drugs and the elderly

H A Bird

Rheumatologists unhesitatingly prescribe drugs for their patients, who are often elderly, living as we do in an era blessed with increasing longevity. Prudent prescribers will follow the cautionary guidelines on reduced dosing in the elderly offered in a variety of national formularies and textbooks. Fewer doctors will understand pharmacokinetics and pharmacodynamics, terms that may seem as indigestible as the topics themselves.

'Pharmacokinetics' is a mathematical analysis of the time course of a drug's concentration in the body, including the contributing factors of absorption, distribution, metabolism, and excretion. 'Pharmacodynamics' refers to the effect of a given concentration of a drug at its site of action. Both change with aging, the latter clearly being of more functional interest. Unfortunately, the plethora of pharmacokinetic studies in the elderly compared with the paucity of pharmacodynamic studies reflects the practical difficulties in executing them.1

Most drugs are absorbed by passive diffusion across the gut wall. In general, absorption is unaffected in the elderly.2 Drug distribution in the elderly may be reduced by changes in protein binding,3 red cell binding,4 body composition,5 and tissue permeability.6 As old people shrink their proportion of fat to muscle and water increases, reducing the distribution of volume for polar drugs such as digoxin,7 but increasing it for fat soluble drugs such as diazepam.8 If the volume of distribution for a drug is reduced, peak plasma concentrations will increase. Plasma albumin concentration also falls with age, permitting the unbound fraction of some drugs to increase, further enhancing their volume of distribution.

Most drugs are eliminated by a first order process, so that the concentration of drug falls exponentially. The plasma half life (the time taken for the concentration to halve) is directly proportional to the amount of drug in the body available for elimination (volume of distribution) and inversely related to the clearance of the drug, by all routes. Even if clearance remains normal the change in distribution can thus alter the rate of removal, a factor that mainly accounts for the prolonged half life of diazepam in the elderly.9

The accepted fall in glomerular filtration rate to 50% by the ninth decade implies only a twofold increase in drug plasma concentrations, so increased renal clearance is only clinically significant for drugs with a narrow therapeutic index that are mainly excreted by the kidney—for example, digoxin. Additional renal impairment, either due to disease or to previous drug treatment, may additionally have occurred in patients with rheumatic diseases.10

In the 1982 calamity of benoxaprofen (half life 25-35 hours), the drug, first introduced in 1980, was withdrawn from the market after reports of hepatic and renal dysfunction together with deaths in elderly patients following its use.11 This has led to more precise guidelines from the registration authorities on the need for new drugs to be evaluated in the elderly populations for which they will be prescribed rather than merely in young student volunteers. All non-steroidal anti-inflammatory drugs (NSAIDs), particularly those with prolonged half lives, should be used with caution in the elderly. That point made, it should also be stressed that many of the patients developing serious side effects with benoxaprofen probably had pre-existing liver or kidney disease before taking the drug.

For piroxicam, a commonly prescribed NSAID with an even longer half life, the evidence, though conflicting, is not exactly alarming. The half life and systemic metabolic clearance of the drug in patients older than 65 years is similar to that in younger patients even though the apparent volume of distribution increases with age.14 The drug has not been found to accumulate in the aged and as renal function plays only a small part in piroxicam elimination the effect of age related reduced creatinine clearance is small.15 16 Contrasting with these studies, Richardson et al studying single dose piroxicam kinetics in the young and elderly found the piroxicam body clearance in elderly women to be about 33% lower than in young women, the difference reflected by the significantly different half lives of 61.7 and 44.9 hours respectively.17 Interindividual variation was high, supporting the hypothesis that the elderly are a heterogeneous group, some aging prematurely in physiological terms whereas others seem to 'retain their youth'.

The interpretation of possible drug related side effects in the elderly is also made more difficult by the variation that can occur in the normal ranges of laboratory variables, particularly of leucocyte count, albumin, globulin, urea, creatinine, alkaline phosphate, and calcium. Moreover, fluctuation, sometimes diurnal, can occur in these when they are measured in patients with active rheumatoid arthritis. Both hepatic produced alkaline phosphatase and y-glutamyltransferase as well as platelets and haemoglobin all act as indices of disease activity, sometimes tempting unwary investigators to attribute disease related changes to the drugs being evaluated.

An exciting but hitherto almost completely unexplored area is the extent, if any, to which the disease itself might influence drug metabolism. Genetic influences are already well established,18 though probably affect drug metabolism less than acquired factors such as smoking.19 The number of human pharmacogenetic differences that have been described in the last 30 years is substantial and expanding. Most phase I metabolic oxidations are performed by the cytochrome P-450 system in...
the liver. There is no great evidence to suggest a
genetic linkage to susceptibility for rheumatic
diseases such as ankylosing spondylitis or rheuma-
toid arthritis, but increasing evidence is accumu-
lating that such oxidative systems can be influenced
by interleukins, the concentrations of which may
certainly fluctuate in chronic inflammatory poly-
arthritis. 20 21 Whether the rate of drug metabolism
is thereby altered with disease activity, whether
the magnitude of this effect if present has clinical
relevance, and whether this is accentuated or
reduced in the elderly are all fundamental questions
now requiring resolution.

Set against this extremely complex background,
the 11th Harrogate annual day conference in the
series 'Growing points in the treatment of rheu-
amtic diseases' was devoted to the theme of
'Antirheumatic drugs in the elderly'. Although it
has only proved possible to touch the tip of the
iceberg, the ensuing conference report follows.

1 Crooks J. Aging and drug distribution: pharmacodynamics.
 7 Chronic Dis 1983; 36: 85-90.
2 Stevenson J H, Salem S A M, Shepherd A M M. Studies on
drug absorption and metabolism in the elderly. In: Crooks
3 Tozer T, N, G. Concepts basic to pharmacokinetics. Pharmacol
4 Nation R L, Vine J, Triggs E J, Learoyd B. Plasma levels of
chlorothiazide and two metabolites after oral administra-
tion to young and aged human beings. Eur J Clin
5 Vestal R E. Drug use in the elderly: a review of problems and
6 Bender A D. Age and its influence on drug action in adults.
7 Ewe G A, Kapadia G G, Yao L, Ludlow M, Marcus F I.
8 MacKlon A F, Barton M, James O, Rawlins M D. The effect
59: 343-50.
G R. The effects of age and liver disease on the disposition
and elimination of diazepam in adult man. J Clin Invest
10 Bird H A. The kidney in rheumatic diseases. Ann Rheum Dis
11 Prescott I F, Leslie P J, Padfield P. Side effects of
electronically stored information on antirheumatic drugs in
1982; 284: 1630.
13 Taggart H M, Aldredice J M. Fatal cholestatic jaundice in
elderly patients taking benoxaprofen. Br Med J 1982; 284:
1372.
14 Woolf A D, Rogers H J, Bradook I D, Corless D.
Pharmacokinetic observations on piroxicam in young
adults, middle aged and elderly patients. Br J Clin
15 Boulton A J. Piroxicam serum levels in patients treated
for rheumatic diseases. Semin Arthritis Rheum 1985; 14
(suppl 1): 25-8.
16 Darvagh A, Gordon A J, Byrne H O, Hobbs D, Casey E.
Single-dose and steady-state pharmacokinetics of piroxicam
and sex on piroxicam disposition. Clin Pharmacol Ther
18 Nebert D W. Clinical pharmacology: possible clinical impor-
1981; 283: 537-42.
19 Siogiat F, Alton G. Aging and drug disposition metabolism.
20 Dinarello C A. Interleukin-1 and the pathogenesis of the
21 Dinarello C A. Interleukin-1. Ann NY Acad Sci 1988; 546:
122-32.

IEEE CONFERENCE REPORT* 1

Antirheumatic drugs in the elderly

H A Bird

An audience of 70, drawn from rheumatologists,
geriatricians, pharmacists, paramedics, and
industry, discussed a variety of aspects of drug
treatment in elderly patients with arthritis
during the course of the annual day conference
on 'Antirheumatic drugs in the elderly' held at
Harrogate on 3 May 1990.

Papers in the morning session, chaired by Dr
H A Bird, discussed general aspects of drug
treatment in the elderly. Dr D Burns, depart-
ment of medicine for the elderly, St James's
University Hospital, Leeds, reviewed age related
changes in drug handling in her keynote address.
The number of 'very elderly' (over 85 years) is
increasing, and 15% of the population are now
aged over 65. Thirty per cent of all drugs are
prescribed for the elderly and, with concomitant
disease, polypharmacy is often necessary with
its risk of reduced compliance. The pharmaco-
kineetic changes present in the elderly might be
summarised under the headings of absorption,
distribution, metabolism, and elimination.

Although the gastric pH rises and splanchnic
blood flow falls with age, changes in absorption
are probably not important except for drugs
such as sulphasalazine, which undergo activation
in the gut. During distribution, changes in
serum albumin may affect steady state plasma
concentrations of acidic agents, and disease
modifying antirheumatic drugs might have
greater toxicity. Liver blood flow is reduced,
resulting in a decreased ability to metabolise
drugs, though interindividual variation in drug
metabolism caused by environmental pollutants
such as tobacco usually outweighs the effects of
aging. At excretion, the elimination of hydro-
philic drugs is reduced in predictable fashion as
glomerular filtration rate falls steadily with
increasing age. The effect of age on hepatic
excretion is less easy to predict, but in general
there is a reduced rate in drugs that have a
high hepatic extraction ratio. In discussion it
was noted that certain subjects seemed to age
faster than others physiologically. It behaved

The University of Leeds,
Royal Bath Hospital,
Corshill Road,
Harrogate,
North Yorkshire
HG1 2PS
H A Bird

*The eleventh in a series of annual day conferences
devoted to the theme 'Growing points in the
treatment of rheumatic disease held at the Yorkshire
Regional Health Authority, Park Parade, Harrogate,
North Yorkshire, on 3 May 1990.