LETTERS TO THE EDITOR

Antenatal administration of aminopropylene diphosphonate

Sir: Diphosphonates are now commonly prescribed drugs in the treatment of a variety of conditions, including the management of hypercalcaemia of malignancy.1 2 Aminopropylene diphosphonate has been shown to be one of the most effective of this group of drugs for this condition.3

We would like to report a case in which aminopropylene diphosphonate was given to a woman for malignant hypercalcaemia two weeks before she gave birth. We, and the manufacturers of this product, believe this to be the first report of such treatment. More importantly, the drug was given safely and without any adverse effect to mother or child. A 24 year old woman underwent lumpectomy and received local radiotherapy in 1984 for a scirrhous carcinoma of the breast. In August 1988 she attended an antenatal clinic, eight weeks pregnant with her second child. At that time, she seemed perfectly well and the fetal ultrasound was normal. At 27 weeks' gestation she was admitted as an emergency to the obstetric unit with acute abdominal pain and chest pain. Clinical and radiological examination showed bilateral pleural effusions, which were tapped and found to contain malignant cells consistent with breast from her original primary malignancy. She was also diagnosed as having lytic bone metastases. At that time her corrected serum calcium was normal, but her alkaline phosphatase was raised at 495 U/l (reference range at our laboratory 5-280 U/l). Treatment was started with epirubicin 90 mg/m² and prednisolone 40 mg for five days, every three weeks. Careful monitoring of the fetus showed normal development. After three courses of chemotherapy, her condition improved and her symptoms improved. A biochemical screen done one week later showed a serum calcium concentration of 3-75 mmol/l, corrected for a serum albumin of 31 g/l, serum phosphate of 1-08 mmol/l and alkaline phosphatase 506 U/l. Her parathyromine level was <0.8 pmol/l (reference at our laboratory 1-5 mmol/l). At 34 weeks' gestation she was treated initially with frusemide and with saline intravenously. After much deliberation and discussion with the medical advisers of the manufacturing company we gave 30 mg of aminopropylene diphosphonate as a four hour infusion. Her serum calcium concentration fell gradually over the next two weeks. At 36 weeks, with a corrected serum calcium of 3.15 mmol/l, she gave birth to a healthy male child weighing 3.06 kg by spontaneous vertex delivery. The child’s total plasma calcium was 2.05 mmol/l (reference range 2.2-2.4 mmol/l) at birth but gradually, over the next five days, fell to 1.65 mmol/l, despite calcium supplementation and the administration of intravenous calcium gluconate. Serum albumin at that time was 33 g/l. Four days after birth, the infant’s parathyromine level was 2.01 pmol/l (reference range 1-2-1 pmol/l). The child’s total plasma calcium was normal 14 days after birth. One week after delivery the mother’s serum calcium was 2.50 mmol/l.

Subsequently, the child has had normal growth and development and, with further chemotherapy, the mother is alive with stable disease 10 months after the delivery of her child. It is difficult for us to assess whether the transient hypocalcaemia noted in the infant was due to fetal parathyroid suppression by maternal hypercalcaemia or whether it was an effect of amniopropylene diphosphonate crossing the placental barrier and exerting a direct effect on the fetus. Ciba-Geigy have informed us that no teratogenic effects were observed in the fetuses of rats given aminopropylene diphosphonate. Animal reproductive studies were only performed with the oral preparation, however. They have no data as yet for the long term effects on the progeny of the animals tested (P Graepel, R Zell, personal communication). We suggest that the parathormone level measured in the child four days after birth, in the face of significantly low total plasma calcium, is inappropriately low. Thus it seems more likely that the maternal hypercalcaemia caused parathyroid suppression in the neonate. Aminopropylene diphosphonate has very few side effects. In the extremely rare treatment situation in which one might envisage giving this agent to a pregnant mother we suggest careful monitoring of serum calcium for at least a week after delivery. In conclusion, aminopropylene diphosphonate was given to a mother in the third trimester with no adverse effects on the delivery of the fetus or on the fetus itself.

D J DUNLOP
M SOUKOP
Department of Medical Oncology
Royal Infirmary
Glasgow G4 0SF

H P MCEWAN
Royal Maternity Hospital
Glasgow G4

Reference


Fatal acute pyelonephritis following pulsed methylprednisolone for rheumatoid arthritis

Sir: We read with interest your two recent articles on pulse methylprednisolone therapy in rheumatoid arthritis.2 3 Although the evidence is strong that such treatment can induce rapid relief of inflammatory joint symptoms, we fear that the risk/benefit ratio may not be as favourable as suggested. We report here a fatal case of acute pyelonephritis following pulse methylprednisolone therapy for rheu- matoid arthritis.

A 71 year old woman with a six year history of seronegative rheumatoid arthritis (American Rheumatism Association criteria, 1987) was admitted with a recent deterioration of her arthritis. She denied recent urinary symptoms and denied any recent infection. She had had a total hysterectomy with bilateral oophorectomy at the age of 47. There was no history of hypertension or diabetes mellitus. Examination confirmed an active, symmetrical polyarticular inflammatory joint disease, but was otherwise unremarkable. Investigation showed an erythrocyte sedimentation rate of 96 mm/h, white cell count 7 x 10⁹/l, 80% granulocytes, urine analysis negative for protein, blood, and glucose, and mid-stream urine cultures were sterile. She was on no antibiotics or organisms on microscopy and culture.

On the day of her admission she was given the first of three alternate day doses of 1 g methylprednisolone succinate (a maximum daily dose of 100 mg methylprednisolone) intravenously over 30 minutes. On day 2 treatment was started with azathioprine 50 mg/day. During the following week her joint symptoms improved and on day 8 the azathioprine was increased to 50 mg twice daily.

On day 10 she developed a fever of 39-3°C and urinary incontinence. Blood and mid-stream urine were collected and treatment with oral aminopropylene 500 mg eight hourly started immediately. Microscopy and cultures were subsequently found to be negative. Her blood count at that stage included a total white cell count of 16.3 x 10⁹/l, 89% neutrophils, 6% lymphocytes, 3% monocytes, 2% platelets and 2% reticulocytes. She was given frusemide 2.5 mg every hour. During the following day she remained febrile, developed left iliac fossa pain, and became confused. The azathioprine was discontinued after a cumulative dose of 600 mg and the aminopropylene was continued by intravenous injection of 500 mg eight hourly and rectal metronidazole 1 g eight hourly. Fluids were given intravenously.

Subsequent deterioration was rapid and she died on the 12th day of her admission. Postmortem examination showed bilateral acute pyelonephritis, confirmed on histological examination, with microabscess formation.

Uncontrollable infection in this patient may have been in part due to pulse methylprednisolone therapy, azathioprine, the underlying rheumatoid disease, or a combination of all three. There was, however, no evidence of marrow suppression attributable to azathioprine. Fatal infections following pulse methylprednisolone therapy have been reported in renal transplant recipients.4 Other fatalities have been attributed to this form of treatment, including one case where death was due to infections.5 It is difficult to assess the risk of serious adverse reactions from published data as most studies were not designed specifically to consider this question. One reason for the relatively high incidence of adverse reactions noted by Gargan and Paulus (nine of 21 rheumatoid patients) may be that it was the purpose of their investigation to highlight such events.6

The benefits of pulse methylprednisolone therapy should also not be overstated. Many studies indicate a return to baseline of indices of response within eight weeks of methylprednisolone alone.7 Erosions have been shown to progress despite methylprednisolone treatment.8 Controlled studies of the long term effects of such treatment have failed to show any improvement in response rates or risks of adverse reactions to slow acting antihistamines and other agents used in conjunction with pulse methylprednisolone therapy.9

The benefits, then, of a short term anti-inflammatory effect of pulse methylprednisolone therapy should be weighed carefully against the risks of adverse reactions, some of which are potentially lethal. We agree with Smith et al that pulse methylprednisolone may be useful in selected patients, particularly 'between initiatives with the treatment of adverse agents, but would be extremely wary of allowing pulse therapy to become an outpatient procedure.1 Final use cautiously and in the lowest effective

References
