Effect of auranofin on plasma fibronectin, C reactive protein, and albumin levels in arthritic rats

KEVIN M CONNOLLY, VERA J STECHER, and DONALD J PRUDEN

From the Department of Chemotherapy, Glaxo Research Division, Five Moore Drive, Research Triangle Park, North Carolina 27709, USA, the Medical Division, Winthrop Pharmaceuticals, 90 Park Avenue, New York 10016, USA; and the Department of Pharmacology, Sterling-Winthrop Research Institute, Rensselaer, New York 12144, USA

SUMMARY Auranofin, a member of a class of compounds with disease modifying activity, was given to arthritic rats to determine if it could reverse the abnormal plasma concentrations of fibronectin (Fn), C reactive protein (CRP), and albumin, which were unaffected by treatment with non-steroidal anti-inflammatory drugs (NSAIDs). When auranofin was orally administered for two weeks to adjuvant induced arthritic rats it significantly inhibited swelling of the injected and non-injected paws at doses of 3 and 10 mg/kg. Rocket electroimmunoassay measurement of plasma proteins in normal, arthritic, and auranofin treated arthritic rats indicated that auranofin at 10 mg/kg significantly decreased (by 77%) the abnormally high concentration of arthritic rat plasma Fn, though it had no effect on Fn concentrations when administered to normal rats. CRP, which was raised approximately twofold above normal in arthritic rats, was reduced by 56% after treatment of arthritic rats with auranofin at 10 mg/kg, though CRP concentrations in normal rats were unaffected by auranofin treatment. Depressed albumin concentrations in arthritic rats were significantly enhanced (by 30%) by dosing with 10 mg/kg of auranofin. At the 3 mg/kg dose, auranofin did not significantly change plasma concentrations of Fn, CRP, and albumin in arthritic rats. At a dose of 10 mg/kg, however, auranofin, in addition to inhibiting chronic systemic paw inflammation, also altered abnormal concentrations of plasma Fn, CRP, and albumin in the adjuvant arthritic rat, thus distinguishing auranofin from standard NSAIDs we have previously tested.

Key words: adjuvant arthritis, disease modifying antirheumatic drugs (DMARDs).

Certain gold compounds are classified as disease modifying antirheumatic drugs (DMARDs) based on their ability to slow the progression of joint destruction in rheumatoid arthritis (RA). Adjuvant induced arthritis in rats is a model of disease which shares many of the characteristics of RA and is therefore useful in identifying compounds which may be beneficial in the clinic. When oral gold is administered to adjuvant arthritic rats it significantly decreases paw inflammation.

Paw inflammation in the arthritic rat is accompanied by abnormally high concentrations of plasma fibronectin. Fibronectin (Fn) is a 440 kilodalton protein found in high concentrations in the synovial fluid and pannus tissue of patients with RA and the plasma of lupus patients. It has opsonic, chemotactic, and adhesive properties, which may contribute to its suggested role in the pathophysiology of some rheumatic diseases. Abnormally high plasma Fn concentrations have been found not only in the arthritic rat but also in the MRL/MpJ (1pr) lupus mouse. Agents like glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs), which provide symptomatic relief without altering the progression of rheumatic disease, are active in decreasing paw swelling in arthritic rats. Neither glucocorticoids nor NSAIDs, however, significantly decrease high Fn concentrations in arthritic rats as measured by rocket electroimmunoassay, though NSAIDs have been reported to lower serum concentrations of the acute phase protein α1 acid glycoprotein. In
another model of inflammation, the carrageenan induced pleurisy macrophage model developed by Ackerman et al.24 NSAIDs also failed to reduce the high concentration of Fn in the rat pleural exudate.25 In contrast, auranofin, as well as other DMARDs, sodium aurothiomalate, chloroquine, and hydroxychloroquine, significantly reduced concentrations of Fn and the number of inflammatory cells in carrageenan induced rat pleural exudates.25

Raised concentrations of acute phase proteins,26 particularly C reactive protein (CRP),27, 28 have been associated with RA. There is clinical evidence indicating that abnormally high concentrations of CRP in patients with RA cannot be reduced by NSAID treatment, which relieves the symptoms but not the underlying progression of disease.29 DMARDs, however, like auranofin, which are efficacious in the treatment of RA,30 also decrease abnormally high concentrations of CRP in arthritic patients.30-32

In contrast with the typically high concentrations of plasma CRP associated with RA,27, 28 serum albumin concentrations in patients with RA are typically depressed.33, 34 Adjuvant arthritic rats also possess abnormally low concentrations of plasma albumin,35 which could not be raised by treatment with standard NSAIDs.36

As raised concentrations of plasma Fn associated with adjuvant arthritis in rats5 were reduced after treatment with the DMARD auranofin, but not glucocorticoids22 or NSAIDs,23 reduction of plasma Fn in arthritic rats and dampening of the acute phase response (typified by alteration of plasma CRP and albumin concentrations) may be characteristic of a class of antirheumatic compounds distinguishable from standard NSAIDs.

Materials and methods

Animals

Male, inbred Lewis rats (approximately 180 g) were obtained from Charles River Laboratories.

Induction and measurement of adjuvant arthritis

Freud's complete adjuvant was prepared by adding 100 mg of *Mycobacterium tuberculosis* (Difco Laboratories, Detroit, Michigan) to 15-6 ml of squalane oil (Aldrich Chemical Co). The *M tuberculosis* was then ground in a homogeniser (Eberbach Corp, Ann Arbor, Michigan) followed by addition of 1 ml of 0-15 M saline. The mixture was thoroughly emulsified by pulsing for 30 seconds with a Polytron (Brinkman Instruments, Westbury, New York). Each rat was injected in the right hind footpad with 300 μg of *M tuberculosis* in a 0-05 ml volume. The systemic nature of the disease was assessed by measuring non-injected (left) hind paw swelling 17 days after adjuvant injection and two hours after the final dose of drug. The injected (right) hind paw was also measured at this time. Paw inflammation was measured by obtaining paw volume with a mercury plethysmograph and recording with a polygraph the amount of mercury displaced (ml).

Dosing

Auranofin was delivered orally in a volume of 1 ml/100 g of body weight. The drug was suspended in a 1% solution of warmed (approximately 37°C) gum tragacanth and homogenised by grinding (Eberbach, Ann Arbor, Michigan) before delivery at 3 or 10 mg/kg. Two days after day 1 adjuvant injection daily dosing was begun and continued until the experiment was finished on day 17. Normal and arthritic untreated controls received vehicle alone. Normal non-injected rats treated with auranofin were given drugs orally according to the regimen used for arthritic rats.

Plasma preparation

Three hours after the animals received the final dose of drug and immediately after paw volume measurements a 0-1 ml sample of blood was obtained by cardiac puncture with a 1 ml syringe and 27 gauge needle. Blood was immediately mixed in microwells with 0-012 ml sodium citrate (18-5 mg/ml), and centrifuged for five minutes in a tabletop centrifuge (Fisher Scientific, Fair Lawn, New Jersey). Whole plasma was removed and assayed for CRP, Fn, and albumin. Repeated freeze thawing was avoided. All experiments were conducted with 10 animals in each group.

Purification of plasma proteins

Commercially available Cohn fraction 5 purified rat albumin (Sigma Chemical Co, St Louis, Missouri) was used as the albumin standard, and antibody to rat albumin was purchased from Cooper Biomedical Laboratories (Malvern, Pennsylvania). It was necessary to purify large quantities of rat Fn and CRP for use as antigen in obtaining appropriate antibody and for calibration of a rat plasma pool standard.

Purified Fn was obtained by a modification of the affinity chromatography procedure of Weiss and Redd37 described by us previously.19 About 200 ml of plasma was applied to a gelatin Sepharose 4B (Pharmacia) column after appropriate ammonium sulphate treatment.19 The column was extensively washed with a phosphate buffered solution of 1 M saline (PBS), eluted with 4 M urea-trometamol (TRIS) buffer, and dialysed against PBS. The
Ten grams of CNBr activated Sepharose 4B (Phar-
macia, Piscataway, New Jersey) was added to a 100
mg of purified Fn or CRP (3 mg/ml). Standard
procedures for protein conjugation were followed as
described previously. The protein conjugated
Sepharose was finally resuspended in degassed PBS
(0-01 M, pH 7-4) and poured into a column where it
was allowed to equilibrate with PBS. Antibody was
precipitated from the goat antiserum with a satu-
rated ammonium sulphate solution. The precipitate
was resuspended with 0-01 M PBS (pH 7-2) in one
fifth the original 250 ml serum volume. The anti-
body solution was dialysed in 0-01 M PBS and
applied to the affinity column. The column was
washed with PBS (pH 7-2) and the antibody to Fn or
CRP eluted with 0-2 M sodium acetate. The eluate
was immediately dialysed against PBS and stored at
-70°C.

M E A S U R E M E N T O F P L A S M A P R O T E I N S
Concentrations of Fn, CRP, and albumin were
measured by rocket electroimmunoassay. Plasma
samples to be tested for Fn or CRP were
diluted 1:10 in trometamol-Tricine buffer. Albumin
measurement was made on plasma samples diluted
1:150. A series of internal standards was run for
each assay. A stock 1 mg/ml solution of rat albumin
was diluted 1:4, 1:5, 1:10, and 1:20 to yield
standards of 250, 200, 100, and 50 μg/ml respect-
ively. The Fn and CRP standards consisted of a
sample from a rat plasma pool diluted with
trometamol-Tricine buffer 1:2-5, 1:5, 1:10, and 1:20.
The rat plasma pool was originally calibrated against
affinity purified rat Fn or CRP. The heights of the
sample rocket peaks were compared with the height
of the internal standards to determine Fn and CRP
concentrations of the sample.

S T A T I S T I C S
An analysis of variance and Dunnett’s multiple
comparison were used to compare all groups (n=10)
and to derive significance between groups. Data
were expressed as the mean (SEM).

R E S U L T S
E F F E C T O F A U R A N O F I N O N I N J E C T E D A N D
N O N - I N J E C T E D P A W V O L U M E O F A R H I T I C R A T S
Fig. 1 depicts the anti-inflammatory activity of
auranofin as measured by its ability to inhibit
swelling significantly in injected and non-injected
rat paws 17 days after adjuvant injection. Oral drug
treatment from day 3 to day 17 with 3 or 10 mg/kg of
auranofin resulted in a significant (p≤0-01)
reduction of injected and non-injected arthritic rat
paw volumes as calculated using a one tailed
Dunnett’s multiple comparison. The percentage inhibition of swelling in the non-injected paw after treatment with 3 or 10 mg/kg of auranofin was 69 and 82%, respectively. The same drug regimen inhibited injected paw swelling by 54 and 67%, respectively. Treatment with 3 and 10 mg/kg of auranofin resulted in a final weight gain of 1 and 5 g respectively, compared with the final weight of untreated arthritic controls.

EFFECT OF AURANOFin ON PLASMA Fn IN ARTHRITIC RATS

As shown in Fig. 2 arthritic rats had a significantly higher concentration of plasma Fn than their normal counterparts (619 ± 359 μg/ml of Fn). The abnormal concentration of Fn in arthritic rats was significantly (p<0.01) reduced after treatment with auranofin at 10 mg/kg but not at 3 mg/kg. Fn concentration was reduced by 77% after treatment with 10 mg/kg of auranofin. Normal animals treated with 10 mg/kg of auranofin did not have significantly different plasma Fn concentrations than untreated controls (aurano-
Figure 3: Effect of auranofin on plasma CRP in arthritic rats. CRP was measured by rocket immunoenzymometric assay as described in Fig. 2. *p<0.01 compared with untreated arthritic animals. Results represent the mean (SEM) of 10 animals per group.

Figure 4: Effect of auranofin on plasma albumin in arthritic rats. Procedures for measuring plasma protein concentrations were identical to those described in Fig. 2 with the following additions. Measurement of plasma albumin was made on plasma samples diluted 1:150 with tris(metamol-Tris) buffer. The internal standard was a 1 mg/ml stock solution of Coln fraction 5 albumin (Sigma) diluted 1:20, 1:10, 1:5, and 1:4 with tris(metamol-Tris) buffer. The antibody to rat albumin was supplied by Cooper Biomedical Laboratories. *p<0.01 compared with untreated arthritic animals. Results represent the mean (SEM) of 10 animals per group.

EFFECT OF AURANOFIN ON PLASMA ALBUMIN IN ARTHRITIC RATS

To determine whether reduction of arthritic rat plasma Fn and CRP by auranofin was due to generalised inhibition of liver protein synthesis, plasma albumin concentrations were measured (Fig. 4). In contrast with the raised levels of Fn and CRP seen in the untreated arthritic rats, plasma albumin concentrations in arthritic rats were depressed compared with normals (6-4 mg/ml v 18-4 mg/ml). Treatment of arthritic rats with auranofin did not reduce the already low concentrations of plasma albumin as would be expected if auranofin were causing generalised inhibition of liver protein synthesis. In the experiment shown in Fig. 4 auranofin at 10 mg/kg significantly enhanced plasma albumin levels by 30%.

Discussion

In this study adjuvant induced arthritic rats had abnormally high plasma concentrations of Fn and CRP and depressed concentrations of plasma albumin. Treatment of arthritic rats with auranofin reduced paw inflammation and significantly altered the abnormal plasma concentrations of Fn, CRP, and albumin.

Fibronectin is a plasma protein normally synthesised in the liver. The high plasma Fn concentrations seen in arthritic rats may be a result of increased liver synthesis but additionally probably reflect increased in situ production in the inflamed joints, as synovial fluids from patients with RA contain a higher concentration of Fn than the plasma. Systemic vasculitis, characteristic of severe arthritis, may also contribute to the high concentrations of plasma Fn in arthritic rats as large amounts of cryoprecipitates associated with Fn have been detected in the serum of patients with RA and vasculitis. In the case of the rat model, with its severe and widely disseminated disease and relatively small blood volume, high plasma Fn concentrations may be partially a result of synthesis from the inflamed tissue. In humans arthritis is rarely allowed to progress to the degree of severity seen in the arthritic rat so that plasma Fn concentrations in humans would be expected to be normal in all but the most severe cases of RA. One of the effects of a DMARD such as auranofin may be its ability to dampen the overactivity of the inflamed joint and vascular tissue, resulting in a reduced concentration of plasma Fn in rats, and possibly a reduced synovial fluid Fn concentration in humans.

Unlike Fn, the acute phase protein CRP is produced only in the liver. Although there is no active synthesis at the site of inflammation, CRP is generally accepted as a useful clinical measurement
of disease activity. The present study supports the use of CRP as a marker of arthritic disease, as the results indicate that plasma CRP concentrations are significantly raised in arthritic rats and can be reduced by treatment with auranofin.

As the liver accounts for all or part of the synthesis of CRP and Fn in it was important to establish that the auranofin mediated reduction of plasma Fn and CRP was not due to generalised inhibition of protein synthesis by the liver. Clinical results indicate that a subnormal concentration of plasma albumin is associated with RA. Data from this laboratory and others indicate that arthritic rats also possess abnormally low concentrations of plasma albumin. Although these low concentrations may be due to increased catabolism of albumin, there is evidence that a low plasma albumin concentration is an indicator of liver dysfunction. If auranofin reduced plasma Fn and CRP merely by inhibiting protein synthesis in the liver then plasma albumin concentrations in arthritic rats treated with auranofin would also be expected to be low. Auranofin treatment, however, reversed the low albumin concentrations seen in arthritic rats. In view of the inverse relation between the ability of auranofin to lower plasma CRP and Fn concentration while at the same time raising plasma albumin concentration it is unlikely that auranofin is causing generalised inhibition of protein synthesis in the liver. Although 30 mg/kg of auranofin has been cited as the minimum lethal dose in rats, the 10 mg/kg dose used in our study resulted in no lethality or weight loss. Results of a three month toxicity study indicated that the only side effect of dosing with 12 mg/kg of auranofin was a less than average weight gain. This supports our data showing that treatment of normal animals with 10 mg/kg of auranofin did not alter plasma Fn or CRP concentrations. Thus it does not appear that reduction of Fn and CRP in arthritic rats is due to non-specific toxicity. The alteration of Fn and CRP, and albumin production may be under regulation by one or more cytokines. Hepatocyte stimulatory factor has been reportedly involved in the induction of CRP in human hepatoma cell lines, while we and others have evidence that high concentrations of splenic interleukin-1 in arthritic rats can be significantly reduced after treatment with auranofin.

We have also recently shown that abnormal concentrations of plasma Fn, CRP, and albumin in the arthritic rat are not altered by NSAID treatment. Thus measurement of these acute phase proteins in the arthritic rat may be useful in differentiating potential antirheumatic compounds from standard NSAIDs.

We are grateful for the technical assistance of Teresa La Brie, John Rathmann, Shirley Allin, Russell Becker, Eric Bohm, Charles Fluno, and Phyllis Speight. The authors also wish to acknowledge Joseph Deleskiewics and Jo Ann Maze of the graphics department, as well as Virginia Dixon, Wendy Hankle, Darlene De Francesco, and Donna Sparrow for their expert typing ability. Auranofin (lot No KFK-8933-101) was a gift from the Smith, Kline and French Laboratories.

References
Treatment of arthritic rats with auranofin 521

