Autoantibodies in childhood scleroderma

R M Bernstein,1 R S Pereira,2 A J Holden,2 C M Black,2 A Howard,3 and B M Ansell3

From the 1Royal Postgraduate Medical School, London, W12; the 2West Middlesex University Hospital, Isleworth, Middlesex; and the 3Clinical Research Centre, Watford Road, Harrow, Middlesex

SUMMARY The clinical presentation of scleroderma in childhood is even more varied than in adult life. This study of 19 children shows that antinuclear antibodies (ANA) detected on the HEp2 cell substrate are just as common as in the adult disorders. All seven children with diffuse scleroderma or acrosclerosis were ANA positive, as were eight of the 12 with more localised disease. Antinuclear antibodies were particularly frequent (58% overall), but anticentromere antibody was not observed. Enzyme-linked immunosorbent assays (ELISAs) for antibodies to collagen types I-V, in contrast to adult scleroderma, gave normal results in all childhood cases.

Key words: systemic sclerosis, children, antinuclear antibodies, anticentromere antibodies, anticollagen antibodies.

Antinuclear antibodies in considerable titre were described in four of nine cases of childhood scleroderma reported in 1976;1 although low titres were found in the remaining five, none had antibodies to DNA or extractable nuclear antigens or low complements. In contrast to the findings of Hanson et al.2 we did not find rheumatoid factor in our children with local scleroderma.

Antibodies to collagen types I and IV have been described in adult scleroderma,3 and other collagen antibodies have been shown in adults with rheumatic diseases4-6 and with a variety of non-rheumatic disorders.7-9 Some previous assays of apparent collagen antibody have been criticised on the grounds that fibronectin (cold insoluble globulin) could affect binding.10 Assays were therefore performed at room temperature in our studies, and fibronectin levels were measured independently by radial immunodiffusion.

The present report concerns a study of autoantibodies in children with a variety of the different scleroderma syndromes seen in childhood.

Patients and methods

Nineteen children were studied. Three had diffuse adult-type cutaneous scleroderma with Raynaud's phenomenon; all three had serious contractures, in addition to which one had visceral involvement (kidney and heart) and another had begun as mixed connective tissue disease with antibody to the nuclear RNP antigen at that time before progressing to severe scleroderma with calcinosis. Four patients had acrosclerosis with calcinosis and Raynaud's phenomenon. In the remaining 12 children scleroderma was limited to scleractively (one patient), linear morphea 'en coup de sabre' (four patients), multiple morphea (two patients), a single patch of morphea (one patient), and multiple cutaneous nodules consisting of fibrinoid material,1 leading to skin tightness of hands and feet (four patients).

Antinuclear antibodies (ANA) were examined on the HEp2 cell substrate (Antibodies Inc, Davis, CA), with serum diluted 1:40 in phosphate-buffered saline and fluorescein isothiocyanate conjugated sheep antihuman IgG (Wellcome Laboratories, Beckenham, Kent). Nuclear, nucleolar, cytoplasmic, and mitotic cell staining was recorded with brightness on a 1–4+ scale. Under similar conditions 15% of 60 healthy adult control sera were ANA positive. The methods and variety of staining patterns revealed have been described previously.11

Collagen antibodies Serum antibodies to collagens were measured by an ELISA technique. Flat-bottom microtitre plates
(Immulon, Dynatech) were coated at 4°C with 200 ng/well of purified human collagen. Human collagen types I–V were used, both in native form and after being denatured by heating at 56°C for 30 minutes, and were dissolved for coating in 0-05 M bicarbonate buffer pH 9-6. After coating overnight wells were washed with phosphate-buffered saline pH 7-4 with added 0-05% Tween 20 (PBS-Tween). Test sera were diluted 1:100 in PBS-Tween and 200 μl/well was added; the plates were then incubated for four hours at room temperature. Wells were washed twice with PBS-Tween. The conjugate was then added as 200 μl/well of alkaline phosphatase labelled rabbit antihuman IgG (Sigma) diluted 1:1000 in PBS-Tween with 0-1% bovine serum albumin. The plates were incubated overnight at 4°C, and wells were washed twice with PBS-Tween. Substrate was added as 200 μl/well of p-nitrophenyl phosphate (Sigma) 1 mg/ml in 0-1 M glycine buffer pH 10-4, with 0-001 M MgCl₂ and 0-001 M ZnCl₂. After incubation for 30 minutes in the dark at room temperature the reaction was stopped with 50 μl saturated NaOH. The optical density at 410 nm was read with a manual plate-reading spectrophotometer (MiniReader II, Dynatech) with computerised output for statistical analysis. Sera from the nineteen patients described were tested in duplicate at 1:1000 dilution, and the results compared with a panel of 20 control sera from age-matched normal children and with 20 normal adult sera. The mean and standard deviation for each collagen in each group of subjects were calculated, and a normal range was constructed for each collagen type. Results were expressed as arithmetic means and standard deviations of optical densities of wells from each plate. Samples were tested together in a random array and could be compared within a plate.

FIBRONECTIN ASSAY

Fibronectin levels in the serum samples were measured by radial immunodiffusion. 100 μl of rabbit IgG antibody to human fibronectin (Dakopatts) was added to 12 ml 1% agarose containing 0-02 M barbitone and 0-04 M ethylenediaminetetra-acetic acid buffered to pH 8-6. Wells were filled with neat serum; replicate standard serum dilutions were included on the plate. After diffusion for 24 hours at room temperature the plate was dried, washed, and stained with Coomassie Blue. Fibronectin concentrations were measured by comparison of precipitate diameters with the standard curve.

Results

ANTINUCLEAR ANTIBODIES

Fifteen (79%) of the 19 sera gave nuclear staining,
which was finely speckled in nine, diffusely grainy in two, homogeneous in one, dots (probably in these cases micronucleoli) in two, and coarsely speckled in one. Eleven sera (58%) showed nucleolar staining, which was clumpy in two (associated with the micronucleolar staining in both cases), speckled in two, and homogeneous in seven (associated with fine speckled nuclear staining in eight and the diffusely grainy pattern in one). Overall, 11 sera gave staining of brightness >2+, four gave 1+ staining, and four were negative. Only one serum gave cytoplasmic staining, and none contained anticentromere antibody.

A combination of antinuclear and antinucleolar antibodies was observed in all seven patients with either diffuse scleroderma or acrosclerosis and in three of the four patients with nodules (Table 1). Three of the four patients with linear morphea were ANA positive (only one with antinucleolar antibody), as were both patients with multiple morphea. The ANA negative patients thus comprised one of four patients with nodules, one of four with linear scleroderma, the one patient with isolated dactyly, and the one case with a single patch of morphea. All patients with diffuse scleroderma or acrosclerosis and two-thirds of the patients with localised scleroderma were ANA positive.

Collagen Antibodies

It can be seen from Table 2 that there were no significant differences between the measured collagen antibody levels in the three groups tested. The number of samples with values more than one SD higher than the mean was similar for each group of subjects, and further analysis showed that there was no evidence that individual patients differed from age-matched normal controls.

Fibronectin

The fibronectin concentration in each serum sample was compared with the collagen antibodies. No correlation was detected (Table 3).

Table 3 Correlation coefficients of serum fibronectin concentrations measured by immunodiffusion, with collagen antibodies measured by ELISA OD_{410 nm}*

<table>
<thead>
<tr>
<th>Collagen type</th>
<th>Native</th>
<th>Denatured</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-0.008</td>
<td>-0.006</td>
</tr>
<tr>
<td>II</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>III</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>IV</td>
<td>0.31</td>
<td>0.007</td>
</tr>
<tr>
<td>V</td>
<td>0.29</td>
<td>0.002</td>
</tr>
</tbody>
</table>

*OD_{410 nm}=optical density at 410 nm.

Discussion

Antinuclear antibodies are an uncommon finding in childhood, and only 10% of over 1400 patients seen in one paediatric immunology/rheumatology clinic were ANA positive (titre ≥20 on rat tissue). Most of those ANA were associated with rheumatic disease, chiefly systemic lupus erythematosus and juvenile arthritis.

Sera from 96% of adults with systemic sclerosis and 73% with morphea were ANA positive when tested on a tissue culture cell substrate. Scleroderma is a rare condition in childhood. The present study shows that the prevalence of antinuclear and antinucleolar antibodies is as high as in adult scleroderma. Thus all seven children with diffuse scleroderma or acrosclerosis and eight (67%) of the 12 with localised scleroderma had ANA.

Anticentromere antibody is a common finding in adult CREST syndrome (calcinosis, Raynaud's phenomenon, oesophageal dysmotility, sclerodactyly, telangiectasia). Yet this antibody was not found in any of the children's sera, though several had calcinosis, Raynaud's phenomenon, and acrosclerosis. A larger study might reveal anticentromere antibody in childhood. Alternatively, it may be that CREST syndrome is a purely adult disease, evolving as it usually does from a long prodrome of Raynaud's phenomenon.

Table 2 ELISA results expressed as mean OD_{410 nm}* with 1 SD

<table>
<thead>
<tr>
<th>Native collagen type</th>
<th>Mean</th>
<th>SD</th>
<th>Denatured collagen type</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.91</td>
<td>0.26</td>
<td>II</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>II</td>
<td>0.26</td>
<td>0.86</td>
<td>III</td>
<td>0.29</td>
<td>0.95</td>
</tr>
<tr>
<td>III</td>
<td>0.33</td>
<td>1.44</td>
<td>IV</td>
<td>0.34</td>
<td>1.34</td>
</tr>
<tr>
<td>IV</td>
<td>0.51</td>
<td>0.58</td>
<td>V</td>
<td>0.58</td>
<td>0.45</td>
</tr>
<tr>
<td>V</td>
<td>0.14</td>
<td>0.51</td>
<td>Denatured</td>
<td>0.14</td>
<td>0.58</td>
</tr>
</tbody>
</table>

*OD_{410 nm}=optical density at 410 nm.
Anti-Scl-70 antibody (recognised by immunodiffusion) is a marker for systemic sclerosis found in up to 20% of adult cases. Although we did not look for anti-Scl-70 directly in this study, we did note in two patients the diffusely grainy ANA pattern that is often associated with that antibody.11

Antinuclear antibodies have been reported in 43% of adults with systemic sclerosis and 41% with localised scleroderma, frequencies much higher than in other systemic rheumatic diseases.11 14 18 Among the children with scleroderma the prevalence of these antibodies was particularly high, including all seven patients with diffuse disease or acro sclerosis, and 33% of those with localised involvement. We have also observed antinuclear antibody in two out of three patients with sclerodermatous graft-versus-host disease but not at all among patients with the scleroderma-like reaction to vinyl chloride (RMB, unpublished data). The link between scleroderma and the nucleolus remains obscure but could be of pathogenetic or aetiological significance. Within the cells nucleoli form around the DNA of the short arms or 'satellites' of the acrocentric D and G group chromosomes at their nucleolar organising regions. One of the cytogenetic abnormalities found frequently in leucocytes from patients with scleroderma is increased 'satellite association' or clumping together of D and G group chromosomes in metaphase,18 and it is intriguing to consider whether antinuclear antibodies might be involved in this process. Indeed, the speckled pattern antinuclear antibody binds to a nucleolar organising region protein (RNA polymerase I).19 On present evidence it seems unlikely that autoantibodies generally enter cells to cause damage directly; rather it may be that whatever agent causes the satellite associations also renders the nucleolus immunogenic.

Fibronectin in clotted blood samples has been reported to be a source of error in measuring collagen antibodies.10 20 Our study shows that there is no correlation between serum fibronec tin and antibodies measured to collagen types I to V; using a two-tailed test of the probability that such a link existed, a correlation coefficient of >0.444 would be needed even at the 5% level, and this is not achieved (Table 3).

There is no apparent difference in antibody levels to any of the collagen types tested when comparison is made with age-matched or adult controls. In particular no cases in this study had significantly raised antibodies to native or denatured collagen type II. Collagen antibodies may not have pathogenic significance in the childhood disease.

References