Intra-articular apatite crystal deposition

H. RALPH SCHUMACHER, P. VERGHESE CHERIAN, ANTONIO J. REGINATO, THOMAS BARDIN, SUSAN ROTHFUSS

From the University of Pennsylvania School of Medicine, Philadelphia, USA and Clinique Rheumatologique, Hospital Lariboisière, Paris, France

Introduction

The role of apatite crystals in calcific periartthritis is well recognised. For many years, however, intra-articular apatites were not thought to play any part in joint disease. They were identified in only a small percentage of menisci examined grossly and by x-ray diffraction by McCarty et al. in 1966. In 1975–7 we and Dieppe et al. using electron microscopy and elemental analysis on joint fluids found apatite crystals in various situations including acute otherwise unexplained arthritis. We review our findings since that time.

Methods for crystal identification

Techniques used to identify apatite crystals in synovial fluids have varied in different series and may affect the importance of the findings. Sensitivity and specificity of most techniques have not been fully defined. Regular light microscopy may allow visualisation of larger clumps of apatite crystals as glossy, slightly irregular globules from 2–10 μm in diameter (Fig. 1). Only a few of such aggregates are birefringent. Stains for calcium and phosphorus such as Von Kossa’s and alizarin red stains can help further identify these globules. We have examined the sensitivity of the alizarin red stain and find that it can detect 0.005 μg of synthetic apatite in 1 ml of synovial fluid. The technique is still not totally specific and is used only as a screening test.

Scanning electron microscopy (SEM) can also identify clumps of the same shape and allows electron probe elemental analysis, which shows not only whether calcium and phosphorus are present but also whether their approximate ratios are close to the 1:67:1 expected with well crystallised apatite.

Transmission electron microscopy allows identification of the tiny thin 50–250 Å diameter needles within the clumps that are typical of apatite. This technique may be used on small amounts of fluid and also on either thin sections or synovial fluid dried onto formvar coated grids. Used on synovial fluid the technique detects down to at least 0.002 mg/ml of apatite and avoids possible artefacts of chemical fixation. Examination of thin sections also allows demonstration of whether and by which cells crystal clumps are phagocytised. This may obviously be important for the phlogistic significance of the apatite. Elements may also be analysed as with SEM. Electron diffraction patterns can also be made for comparison with known standards, but the problems and value of this have not yet been worked out.

When large amounts of suspected apatite are present x-ray diffraction is generally accepted as the definitive method of analysis, although small amounts of certain crystals may be missed when mixed with other predominant crystals. A semi-quantitative screening technique for apatite using 14C disodium etidronate binding is also being studied. Intracellular crystals might be missed with this method. Infrared spectrophotometry has been used to supplement findings with other techniques and with the use of Fournier transform may allow detection of small amounts of crystals mixed in with other predominant ones.

Apatite in joints

Apatite has been described in knees, shoulders, hips, wrists, first carpometacarpal joints, metacarpophalangeal, proximal and distal interphalangeal joints, and
metatarsophalangeal joints including the 1st. We have studied a total of 104 patients in whom apatite was found by transmission electron microscopy and find a similar distribution of joints containing these crystals. Cases reported have generally been from studies of specific diseases or selected by referral so the incidence of identifiable apatite in the general population remains unclear. Women seem to be affected more often than men, and we know of no reports in children except in association with collagen disease. Our study included 58 women and 46 men; there was a high incidence of elderly patients because we included 44 patients from a study of osteoarthritis, the youngest patient was 36 years old.

Clinical Presentations

Otherwise unexplained acute inflammatory arthritis with joint effusions containing apatite has been reported by Fam et al., Dieppe et al., and our group at knees, wrists, hips, proximal interphalangeal joints, and first metatarsophalangeal joints, and first metatarsophalangeal joints and may well occasionally occur at any joints where crystals can deposit. Some patients have had multiple attacks and have also occasionally had calcific periarthrithis. Attacks may resolve without treatment; some progress to chronic erosive arthritis. Synovial fluid leucocyte counts in clinically acutely inflamed joints have ranged from 1-8-84 × 10⁹/1. Neutrophils have ranged from 27% to 90% with a predominance in acute cases. Crystals may be seen to be phagocytised by synovial fluid neutrophils and mononuclear cells (Fig. 2). Most recent studies have also identified apatite crystals in some joint effusions without any dramatic evidence of inflammation.

Many such joints have had osteoarthritis, but the real incidence of apatite deposition in osteoarthritis and how often it occurs early in still grossly normal cartilage is not yet known. We found apatite in 44 of 100 osteoarthritis effusions after examining just one grid on each by transmission EM. Dieppe et al. found apatite in 9 of 34 unselected osteoarthritic fluids with scanning electron microscopy (SEM). Using TEM Ali found apatite more often in osteoarthritic than other cartilages but did not describe incidence. Even in osteoarthritis with 'non-inflammatory' joint effusions apatite has been phagocytised by synovial lining cells that might release proteases and collagenase and be a major factor in progressive joint damage.

Radiographic Findings

Joints with acute or subacute apatite-associated arthritis may show calcification in the synovial space (Fig. 3). The linear cartilage or meniscal calcification seen with CPPD is not expected. Some x-ray films show no calcification despite later demonstration of large amounts of apatite. In fact, only 21 of our 104 patients had obvious x-ray evidence of calcification. Patients may also have periarticular calcifications at the symptomatic site or elsewhere. Erosive arthritis may develop and changes of osteoarthritis may be present.

In patients with clinical osteoarthritis the severity of radiographic changes of osteoarthritis tends to correlate with the incidence of apatite deposition.

Apatite associated with other diseases

Apatite crystals have been found in a high percentage of specimens of synovial fluid or cartilage from patients known also to have CPPD deposition. Either or both crystals may be phagocytosed; in our still limited experience CPPD seems more often to be intracellular.

Other diseases that have been associated with clinically significant apatite arthritis include scleroderma, dermatomyositis, and systemic lupus erythematosus; renal failure treated by haemodialysis; and possibly high dose vitamin D treatment. Apatite also occurs in other joint diseases, presumably as a secondary complication. We found apatite in 8 out of 32 effusions from joints with
rheumatoid arthritis; the crystals correlated with the severity of secondary osteoarthritis. In certain cases acute dramatic inflammation in a single joint may be induced by crystals rather than by the underlying rheumatoid arthritis. Table 1 shows diagnoses other than osteoarthritis in our 104 patients with apatite deposition.

Table 1: Associated diseases other than osteoarthritis in 104 patients with intra-articular apatite crystals

<table>
<thead>
<tr>
<th>Diseases</th>
<th>No of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatomyositis, scleroderma</td>
<td>6</td>
</tr>
<tr>
<td>Renal failure on dialysis</td>
<td>10</td>
</tr>
<tr>
<td>Oxalate deposition</td>
<td>1</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>3</td>
</tr>
<tr>
<td>Haemochromatosis</td>
<td>3</td>
</tr>
<tr>
<td>Osteochondromatosis</td>
<td>1</td>
</tr>
<tr>
<td>Acromegaly</td>
<td>2</td>
</tr>
<tr>
<td>CPPD deposition</td>
<td>22</td>
</tr>
<tr>
<td>Gout</td>
<td>5</td>
</tr>
<tr>
<td>Rheumatoid or psoriatic arthritis</td>
<td>10</td>
</tr>
<tr>
<td>Temporal arteritis with aseptic necrosis</td>
<td>1</td>
</tr>
</tbody>
</table>

Characteristics of crystals

It is impressive that there is tremendous morphological variation among apparent apatites we have found in joints. Crystals may be almost punctate, (Fig. 2), rods or thicker 'boat-like' structures, (Fig. 4) or long needles (Fig. 5); they may be densely or loosely packed, and larger crystals may have the suggestion of an internal structure at high magnification. Crystals may be rare or profuse enough to make the fluid milky. Rare clumps may obviously have different clinical significance than massive amounts. Crystals are frequently phagocytosed (Fig. 6) but seem most often to be ingested by mononuclear cells rather than polymorphonuclear neutrophils. Elemental analysis also shows some variation with some apparent apatite having Ca:P ratios well below the expected 1:67:1, suggesting the presence of some amorphous or poorly crystallised salts. Substitution of chloride and carbonate in apatite also varies. As yet we know of no good correlation of elemental analysis findings with crystal morphology.

Apatite was most often detected in synovial fluid because of its accessibility and from knees rather than other joints for the same reason. Arms, including finger joints, wrists, elbows, and shoulders seemed involved more often than the legs in patients with collagen-vascular disease or those undergoing renal dialysis. Apatite was seen in surgical specimens of cartilage either as round clumps near to chondrocytes (but not clearly in matrix vesicles) or as irregular masses on the surface or in the interstitium. Apatite in synovium was frequently phagocytosed or enfolded by synovial cell processes.

Mechanisms involved in apatite deposition disease

The ability of apatite to induce acute inflammation in joints has been shown by intra-articular injection into the knees of dogs using the same model as that used for urate and CPPD crystals. Apatite has also produced inflammation at other sites—for example, the pleural space and subcutaneous tissue after experimental injection. Apatite is not
possibility that other materials, including fibronectin, osteonectin enzymes, and complement, are present should also be considered. As previously suggested with urate crystals, substances adhering to crystals could encourage or inhibit inflammation. Effects could even vary depending on other cellular and humoral aspects of the joint. Complement may be activated by apatite as well as by other crystals.

Apatite almost certainly appears in joints by different mechanisms. In some cases (as with CPPD) it is thought to be a result of degenerative changes in cartilage and to deposit first in cartilage. In other examples, especially when associated with migratory calcific periarthritis at other sites, it probably deposits outside cartilage due to the still unknown systemic factors that seem to cause most such calcific periarthritis. Phosphate excess or other features of renal failure and haemodialysis seem to contribute to some cases. Serum and synovial fluid calcium and phosphate concentrations have been normal in most cases. Occasionally apatite is seen to have risen from fragments of bone released into severely destroyed joints.

Apatite deposition in articular cartilage occurs spontaneously in aging rabbits or after administration of vitamin D; synovial calcification with apatite can be induced by intra-articular calciphylaxis. In neither of these established types of experimental apatite calcification has acute inflammation occurred. Long term studies are still needed to determine if osteoarthritis evolves or if various modifications can produce attacks of acute arthritis.

Treatment

Acute inflammation associated with apatite deposition generally seems to respond to treatment with indomethacin, other non-steroidal agents, or colchicine. Aspirin has been ineffective in some cases. Intra-articular depot corticosteroids have also appeared to be helpful. We have no personal experience with measures to prevent or decrease apatite deposition. Disodium etidronate has been reported to decrease calcinosis but with chronic use may also effect bone mineralisation. In patients with
abnormal calcium or phosphorus metabolism as, for example, occurs in many of those with renal failure, better control of phosphorus concentrations may decrease apatite deposits. Some calcinosis in or around joints has also been reported to resolve spontaneously. In one patient of ours with a scleroderma-like disease apatite deposits in finger joints resolved when joints gradually stiffened with progressive skin disease. Indomethacin was thought to decrease para-articular ectopic ossification in three cases after total hip arthroplasty. Neither this nor other possible ways of decreasing calcinosis have been adequately and systematically evaluated.

Other calcium-containing crystals

Other calcium-containing crystals have been described in intra-articular sites. Brushite (CaHPO₄, 2H₂O) has been reported in small amounts of uncertain clinical importance and usually in association with CPPD. Whitlockite and octacalcium phosphate may also occur in diseased joints along with apatite.

Recently, we have found calcium oxalate crystals in synovial effusions in three patients undergoing hemodialysis for chronic renal failure. In one patient x-ray films showed finger calcifications similar to those seen with apatite and knee chondrocalcinosis like that seen with CPPD deposition. Detailed analyses at necropsy revealed massive oxalate deposits and no CPPD. The list of crystals identifiable in joints is almost certainly not yet complete. We and others have seen other unidentified birefringent or electron dense material that is still under evaluation.

Supported in part by grants from the Veterans Administration, National Institutes of Health (1-R21-AG02815-01), McCabe Foundation, and Barsumian Fund.

We thank Miss Gilda Clayburne, Miss Marie Sieck, and Mrs Susan Rothfuss for excellent technical help on the work from our laboratory and appreciate the careful typing of Miss Mary Ellen Maguire.

References

Intra-articular apatite crystal deposition Suppl p 59