Chromosomes in rheumatoid arthritis

Sir, Lymphoproliferative disorders are more frequently found in patients with autoimmune disease than in normal persons. Isomaki et al.1 showed an increased risk of leukaemia, lymphoma, Hodgkin’s disease, and multiple myeloma in rheumatoid arthritis (RA) patients. These investigators postulated that a continuous immunological stimulation in RA could cause proliferation and malignant transformation of the immunologically competent cell clones. Green et al.2 believe that immunodeficiency in patients with autoimmune disease may be a factor in the development of lymphoproliferative disease.

We found marked chromosomal abnormalities in a patient with lymphoma who was treated with intra-articular radioactive gold (198Au) for severe RA.3 Although we were tempted to conclude the chromosomal abnormalities found in our patient were due to her 198Au treatment, we were unable to exclude the possibility that the phenylbutazone and prednisone treatment or the development of her lymphoma or RA may have been the cause of the chromosomal abnormalities. This communication reports our chromosomal findings of 21 RA patients with various treatments and of 28 controls.

Heparinised peripheral blood was obtained for cytogenetic studies from 21 active RA patients. Five patients received 10 mCi of intra-articular 198Au; 14 received intramuscular nonradioactive gold; and 2 received full therapeutic doses of aspirin (7800 mg/day). The controls consisted of 28 hospital employees without any known illnesses. Peripheral blood was cultured in TC 199 tissue culture medium, enriched with either autologous plasma or fetal calf serum and stimulated with phytohemagglutinin (PHA) according to the method used in our laboratory.4 After incubation at 37°C for three days the cultures were exposed to colcemid at a concentration of 0.16 μg/ml for one hour. The cells were then exposed to 0.075 M KC1 for half an hour, fixed with acetoalcohol, and the slides were made by the air-dried method. The slides were stained with Giemsa and analysed for chromosomal breakages as described.

The mean rate of chromosomal breakages was 8.6 ± 2.4 (SEM) in the 5 RA patients treated with 198Au; 9.4 ± 1.43 in the 14 treated with nonradioactive gold; and 5.5 in the 2 treated with high doses of aspirin. The 28 controls had a frequency of 3.6 ± 0.56. The mean difference of the chromosomal breakages among the RA patients, treated with radioactive or nonradioactive gold, was not statistically significant. But the difference between the RA patients and the controls was significant.

Acquired chromosomal abnormalities can be seen in patients exposed to radiation, virus, and certain chemicals or in patients with various malignant diseases. The marked chromosomal abnormalities found and reported in our patients with lymphoma, treated with 198Au for her RA, must not have been caused by the radioactivity of the 198Au per se. This conclusion is based on our present finding that significant chromosomal breakages are also seen in RA patients treated with nonradioactive gold. Although it is possible that the chromosomal abnormalities found in our RA patients were associated with their primary disease rather than their treatment, we cannot make this conclusion based on our present data, since all our patients were treated with various methods. Also, it is not possible to study RA patients not treated with aspirin to rule out this possibility.

Monroe Community Hospital & Strong Memorial Hospital, University of Rochester, Rochester, NY 14642, USA

References

Klebsiella, ankylosing spondylitis, and statistics

Sir, Eastmond et al.1 have followed up by post 44 ankylosing spondylitis patients. They obtained monthly a questionnaire about the clinical activity of the disease and a faecal specimen for klebsiella culture. They state that 18 patients on 19 occasions had K. aerogenes cultured from