Family study of lipid and purine levels in gout patients

L. GAIL DARLINGTON, J. SLACK, and J. T. SCOTT

From 1Epsom Rheumatology Unit, Epsom District Hospital, Epsom, Surrey; the 2MRC Clinical Genetics Unit, Institute of Child Health, London; and 3Charing Cross Hospital and Kennedy Institute of Rheumatology, London

SUMMARY A family study was performed to determine whether the hypertriglyceridaemia associated with gout is present in families of gout patients or due to the life style of the patient himself.

To determine whether the hypertriglyceridaemia of gout patients occurs in their families or is simply the result of the life style of these obese, often alcohol-drinking patients who frequently originate from higher social classes, a family study was designed to measure lipid and uric acid levels in the blood of gout patients and their first-degree relatives and to compare them with those found in controls of the same age and sex.

Patients and methods

Pedigrees were constructed for 169 male and 11 female primary gout patients with details of age and whereabout of all living, first-degree relatives. The patients had been diagnosed by generally accepted clinical criteria; many of them were receiving treatment for hyperuricaemia at the time of the study. Fasting blood samples were analysed to determine lipid and uric acid levels. Cholesterol was measured by a revision of the Schoenheimer-Sperry method for cholesterol determination, triglycerides by a micromethod for direct determination, and electrophoretic separation of lipoproteins was performed in agarose gel by the method of Noble. Plasma urate was measured by direct ferric reduction or by absorbance change on oxidation of urate with alkaline ferricyanide.

Owing to regional and ethnic variations in lipid concentrations results were compared with those obtained by the same laboratory from 2388 control subjects of known age and sex from the same geographical area and ethnic background as the gout group, that is, from a working population in northwest London.

Results

Lipid and uric acid data for gout patients, first-degree relatives, and expected values for controls at the same mean age are given in traditional units in Tables 1a and 1b.

The means and standard deviations of variables from gouty index patients and relatives when compared with controls are also expressed in standard

Table 1a Lipid and uric acid data from male gout patients and male first-degree relatives

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean and SD</th>
<th>n</th>
<th>Mean age</th>
<th>Expected values for controls at mean age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gout patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol mg/dl</td>
<td>244.3 ± 56.4</td>
<td>147</td>
<td>56.5</td>
<td>234.3</td>
</tr>
<tr>
<td>Triglyceride mg/dl</td>
<td>212.95 ± 239.1</td>
<td>147</td>
<td>55.4</td>
<td>124.8</td>
</tr>
<tr>
<td>% β-Lipoprotein</td>
<td>45.9 ± 11.1</td>
<td>141</td>
<td>55.2</td>
<td>51.6</td>
</tr>
<tr>
<td>% Pre-β-Lipoprotein</td>
<td>26.8 ± 13.4</td>
<td>141</td>
<td>55.2</td>
<td>21.2</td>
</tr>
<tr>
<td>% α-Lipoprotein</td>
<td>27.1 ± 9.6</td>
<td>141</td>
<td>55.2</td>
<td>27.1</td>
</tr>
<tr>
<td>Uric acid μmol/l</td>
<td>389.8 ± 91.1</td>
<td>136</td>
<td>55.4</td>
<td>360</td>
</tr>
<tr>
<td>Male relatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol mg/dl</td>
<td>238.5 ± 48.4</td>
<td>69</td>
<td>48.1</td>
<td>232.7</td>
</tr>
<tr>
<td>Triglyceride mg/dl</td>
<td>141.8 ± 93.5</td>
<td>70</td>
<td>47.9</td>
<td>127.1</td>
</tr>
<tr>
<td>% β-Lipoprotein</td>
<td>47.7 ± 7.82</td>
<td>67</td>
<td>57.1</td>
<td>51.7</td>
</tr>
<tr>
<td>% Pre-β-lipoprotein</td>
<td>22.2 ± 10.2</td>
<td>67</td>
<td>57.1</td>
<td>21.0</td>
</tr>
<tr>
<td>% α-Lipoprotein</td>
<td>30.0 ± 7.83</td>
<td>67</td>
<td>57.1</td>
<td>27.6</td>
</tr>
<tr>
<td>Uric acid μmol/l</td>
<td>360.5 ± 67.0</td>
<td>64</td>
<td>47.9</td>
<td>360</td>
</tr>
</tbody>
</table>
deviation units in Table 2 to eliminate the variables of age and sex. The statistical significance of differences between data from gout patients, relatives, and controls is indicated. Table 2 shows that triglyceride levels in gout patients were found to be significantly higher than in controls (p<0.001). These changes were, predictably, reflected by changes in the proportion of pre-β-lipoprotein, which was also significantly higher in gout patients than in controls (p<0.001). There was a significant reduction in the proportion of β-lipoprotein in gout patients when compared with controls (p<0.001).

Table 3 shows that triglyceride and pre-β-lipoprotein levels in gout patients were significantly higher than in relatives (p<0.001) with a significant reduction in the proportion of β-lipoprotein (0-01>p>0-001).

Table 3 shows a small but significant reduction in the proportion of β-lipoprotein in relatives when compared with control subjects (0-01>p>0-001) but no difference in triglycerides or pre-β-lipoprotein levels.

Table 3 also shows a marginal increase in the proportion of α-lipoprotein in relatives when compared with both gout patients and controls (0-05>p>0-01), but there was no significant difference between the α-lipoprotein proportions in gout patients and controls. There was no significant difference between cholesterol levels in gout patients and controls or between gout patients and relatives, but both Tables 2 and 3 show that there was a marginal increase in cholesterol levels in relatives when compared with controls (0-05>p>0-01).

As shown in Table 3, uric acid levels in male, gouty index patients were significantly higher than in controls or relatives (p<0.001), despite the fact that many of them were on urate-lowering drugs. Separate analysis of female index patients must be assessed with caution in view of the small numbers concerned. Table 2 shows that the mean uric acid level in relatives was slightly greater than in controls, but this difference was very small and did not approach the significant elevation found in the study of Hauge and Harvold.9

The families of 35 gout patients who were found to have lipid levels (triglyceride and/or cholesterol) above the 95th centile were assessed to determine whether they constituted a particular subgroup in the family study.

First-degree relatives of hyperlipidaemic, gouty index patients had raised cholesterol levels when compared with controls (males 0-05>p>0-025; females 0-02>p>0-01). There were no elevations in triglyceride levels among these relatives.

Weights were measured in gouty patients, relatives, and controls. There were too few female gout patients for analysis, but the weight data presented in Tables 4 and 5 were analysed and showed that male, gout patients were significantly heavier than male girls.

The families of 35 gout patients who were found to have lipid levels (triglyceride and/or cholesterol) above the 95th centile were assessed to determine whether they constituted a particular subgroup in the family study.

First-degree relatives of hyperlipidaemic, gouty index patients had raised cholesterol levels when compared with controls (males 0-05>p>0-025; females 0-02>p>0-01). There were no elevations in triglyceride levels among these relatives.

Weights were measured in gouty patients, relatives, and controls. There were too few female gout patients for analysis, but the weight data presented in Tables 4 and 5 were analysed and showed that male, gout patients were significantly heavier than male girls.
relatives and controls (p = <0·001). The mean weight of hyperlipidaemic male gouty patients was not, however, significantly heavier than the mean of the whole gouty group. This obesity may well be associated with hypertriglyceridaemia in certain male subjects and in raised triglyceride levels in the whole male gout population.

The alcohol intake of the hyperlipidaemic group varied widely, emphasising that alcohol is only one factor in inducing hyperlipidaemia but is doubtless significant in some cases.

Discussion

Many authors have noted an association between hypertriglyceridaemia and gout. For example, Darlington and Scott¹ found significant hypertriglyceridaemia in primary gouty patients when compared with matched controls (0·01 > p = 0·001). Berkowitz¹⁰ and Frank¹¹ found raised triglyceride levels in 52% and 84% of gouty patients respectively, but this association was not seen in patients with symptomless hyperuricaemia.¹²

In 1973 Mielants et al.¹³ found an increase in the proportion of pre-β-lipoproteins and a reduction in the proportions of α- and β-lipoproteins in gouty patients. Emmerson and Knowles¹⁴ demonstrated hypertriglyceridaemia in primary gouty patients persisting after correction for body weight, and Darlington and Scott¹⁰ also described gout and hypertriglyceridaemia independent of obesity.

In 1974 Gibson and Grahame¹⁵ suggested that obesity, alcohol, or both were the main causes of hypertriglyceridaemia in gout. Gibson et al.¹⁶ later showed significant reductions in triglycerides in gouty patients following reduction of either alcohol intake or weight, but Darlington and Scott,¹⁷ although observing some reduction in triglycerides after alcohol abstention, did not find that this achieved statistical significance.

Elkeles and Chalmers¹⁷ raised triglyceride concentrations by infusion of fat but did not demonstrate an effect on plasma uric acid from this elevation of triglyceride. Gibson et al.¹⁸ also used the Intralipid tolerance test and similarly failed to demonstrate any effect either of triglyceride on uric acid levels or of hyperuricaemia on triglyceride removal.

The hypercholesterolaemia in first-degree relatives of hyperlipidaemic gouty index patients is best explained by polygenic inheritance in the same way as first-degree relatives of tall index patients tend to be taller than average. Since the hyperlipidaemia was a hypercholesterolaemia (and not a hypertriglyceridaemia such as occurs in association with gout) it was probably a finding which is unrelated to hyperuricaemia or gout itself.

Unaffected relatives of gout patients have been reported to show an increased serum level of uric acid, which is thought to be determined by polygenic factors.⁹

The results of this family study reveal hyperpre-β-lipoproteinaemia in gouty patients as a whole with reduction in β-lipoprotein. These abnormalities were not seen in first-degree relatives, suggesting that the hypertriglyceridaemia associated with gout is not present in the families of gouty patients but is rather due to factors in the life style of the patients.

L.G.D. gratefully acknowledges the support from a Trustees' Research Fellowship from Charing Cross Hospital, London, at the time when this study was performed.

References

