Circulating immune complexes in polymyalgia rheumatica and giant cell arteritis

J. R. PARK, J. G. JONES, G. D. HARKISS, AND B. L. HAZLEMAN

From Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ

SUMMARY Sera from patients with giant cell arteritis and/or polymyalgia rheumatica have been found to contain increased levels of circulating immune complexes (IC). Results with the polyethylene glycol precipitation complement consumption (PEG-CC) assay have been correlated with disease activity. 44% of samples from an active untreated group (21 patients) had increased levels of ICs compared with 23% from an inactive treated group (49 patients). Further analysis of circulating ICs was performed by \(^{125}\)I-C1q binding, the PEG-C4 test, and \(^{125}\)I-conglutinin binding assays. Although we did not find a high correlation between IC levels and disease activity, isolation and analysis of the ICs may lead to further understanding of this disorder.

Immunoglobulins and complement deposits have been demonstrated in the media and adjacent to the internal elastic lamina in some involved temporal arteries.\(^1\)\(^2\) However, it is not known whether such deposits were the result of passive deposition of immune complexes (IC) from the circulation or from the combination of specific antibodies with antigens in situ. It had been noticed while screening for ICs in sera from patients with a variety of disorders that raised IC levels were detected in sera from patients with polymyalgia rheumatica (PMR)/giant cell arteritis (GCA). These observations prompted further investigation of circulating ICs in patients with PMR/GCA.

In this paper we present the results of estimating serum immune complexes by the polyethylene glycol precipitation complement consumption assay (PEG-CC) in patients with PMR/GCA. We have correlated the results with an estimate of disease activity to assess whether the measurement of ICs could assume a role in diagnosis and patient management. Additional sera have been tested by 4 independent IC assays.

Materials and methods

PATIENTS AND CONTROLS

The diagnosis of PMR and GCA were according to the criteria of Jones and Hazleman.\(^2\)\(^3\) Fifty serum samples from 28 PMR/GCA patients were tested by the PEG-CC assay as part of a screening study for IC in sera from patients with a variety of disorders.

Two hundred and thirty-four serum samples from 107 patients were examined together with the clinical details, erythrocyte sedimentation rate (ESR), C reactive protein (CRP), and complement measurements. Four or more samples were obtained from 26 of the patients. Of the 107 patients, mean age 67 years \(\pm\) 7 (SD), 37 had PMR, 25 GCA, and 45 had both. Disease activity was assessed by one observer throughout. The symptoms of polymyalgia and of arteritis were separately graded 0–4 (inactive—very active). In an attempt to obtain an index of disease activity using both laboratory and clinical measurements the patients were subdivided into 4 groups A–D (Table 1).

<table>
<thead>
<tr>
<th>Disease activity</th>
<th>Active Untreated</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unidentified</td>
</tr>
<tr>
<td>B</td>
<td>Active</td>
</tr>
<tr>
<td>C</td>
<td>Slightly active</td>
</tr>
<tr>
<td>D</td>
<td>No activity</td>
</tr>
<tr>
<td>E</td>
<td>Symptoms of PMR</td>
</tr>
<tr>
<td>F</td>
<td>Symptoms of GCA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP = C reactive protein</td>
<td></td>
</tr>
<tr>
<td>ESR = Erythrocyte sedimentation rate</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Clinical and laboratory measurements used for assessment of disease activity (A–D)
The PEG-CC, PEG-C4, and \(^{125}\text{I}-\text{Clq}\) binding IC assays were used to study 2 patients serially and 74 serum samples from 24 patients were tested by the PEG-CC, \(^{125}\text{I}-\text{Clq}\) binding, and \(^{125}\text{I}-\text{conglutinin}\) binding IC assays. Normal human sera obtained from the National Blood Transfusion Service (NBTS) in Cambridge were used to establish the normal ranges. Also 30 sera from healthy people age \(\leq 50\) years (mean 58 \(\pm\) 5) were tested in the PEG-CC assay. Blood samples from the patients and controls were clotted at room temperature and the sera were stored at \(-20^\circ\)C within 3 hours of collection. An aliquot was stored in liquid nitrogen for complement studies.

METHODS

Immune complexes were measured by the PEG-CC test as described by Harkiss and Brown.\(^4\) In this test IC are first precipitated from serum with 2-5% polyethylene glycol (PEG), and the precipitate is redissolved in complement fixing diluent to 1/10 the original volume of serum. Residual complement fixing ability is then assayed in a sensitive complement consumption procedure. The results are expressed as 'percentage complement consumption' (%CC).

ICs were measured by the C4 test described by Digeon et al.\(^5\) C4 bound to IC is precipitated from serum with 3% PEG and then assayed by radial immunodiffusion.

\(^{125}\text{I}-\text{Clq}\) binding ICs were measured by the method of Zubler et al.\(^6\)

\(^{125}\text{I}-\text{conglutinin}\) binding was measured by the method of Macanovic and Lachmann.\(^7\) Conglutinin, a protein found only in bovine serum, has a calcium-dependent specificity for IC that have fixed complement in vivo and have bound C3bi.

Immunoglobulin levels of serum samples were determined by single radial immunodiffusion.

Total haemolytic complement (CH\(_{50}\)) was measured by the kinetic turbidimetric assay described by Lachmann and Hobart.\(^8\) The third component of complement (C3) was measured by rocket immunoelectrophoresis.

Normal ranges were established from the mean \(\pm\) 2 standard deviations. For the IC assays they were: PEG-CC 0-24\%, PEG-C4 0-1-29 mg/100ml, \(^{125}\text{I}-\text{Clq}\) binding 0-8-5-6\%, \(^{125}\text{I}-\text{conglutinin}\) binding 0-18-6\%. The normal ranges for complement (C3) were: CH\(_{50}\) 900-1800 units/ml, C3 60-180 mg/dl (SI conversion: mg/l=mg/100 ml (dl) \(\times\) 10.)

Results

Fifteen of the initial 28 patients (54%) in the screening study were shown to have raised immune complex levels when tested by the PEG-CC assay (Table 2). Results of assaying sera from patients with other disorders for IC by the PEG-CC test are included for comparison. Analysis of the results by the Mann-Whitney U rank correlation test indicated that the PMR/GCA IC levels were significantly different (mean 21 \(\pm\) 13) from the NBTS controls (mean 14 \(\pm\) 5) and suggested further study.

In the sera from a further 107 patients 50 (47%) were shown to have raised IC at some time. This represented 32\% of the samples tested (mean 22 \(\pm\) 20) and confirmed the finding of 32\% samples showing raised IC in the screening study. In contrast, raised IC levels were seen in only 2 of 30 (7\%) samples from the controls aged 50 years or over and 56 of 94 (60\%) samples from rheumatoid arthritis patients at different stages of their disease.

Fig. 1 shows the IC levels when the PMR/GCA

Table 2. Incidence of circulating immune complexes in sera from patients with various diseases (PEG-CC assay)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Number of patients</th>
<th>Number of patients above normal at least once (%)</th>
<th>Number of samples</th>
<th>Number of samples above normal (%)</th>
<th>% CC SD</th>
<th>Statistical significance (Mann-Whitney U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic lupus erythematosus</td>
<td>53</td>
<td>32 (60)</td>
<td>192</td>
<td>107 (56)</td>
<td>43 (\pm) 69</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>50</td>
<td>30 (60)</td>
<td>89</td>
<td>43 (48)</td>
<td>36 (\pm) 66</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Post-streptococcal glomerulonephritis</td>
<td>14</td>
<td>11 (79)</td>
<td>34</td>
<td>19 (56)</td>
<td>44 (\pm) 40</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Infective endocarditis</td>
<td>7</td>
<td>7 (100)</td>
<td>25</td>
<td>16 (64)</td>
<td>36 (\pm) 24</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Idiopathic vasculitis</td>
<td>28</td>
<td>11 (39)</td>
<td>36</td>
<td>16 (44)</td>
<td>29 (\pm) 25</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Erythema nodosum</td>
<td>10</td>
<td>5 (50)</td>
<td>15</td>
<td>7 (47)</td>
<td>33 (\pm) 29</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Purpura</td>
<td>14</td>
<td>5 (36)</td>
<td>15</td>
<td>5 (30)</td>
<td>24 (\pm) 14</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Primary biliary cirrhosis</td>
<td>8</td>
<td>7 (88)</td>
<td>10</td>
<td>8 (80)</td>
<td>29 (\pm) 7</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Renal transplantation</td>
<td>57</td>
<td>29 (51)</td>
<td>222</td>
<td>70 (32)</td>
<td>22 (\pm) 17</td>
<td>p<0.002</td>
</tr>
<tr>
<td>Polymyalgia rheumatica/giant cell arteritis</td>
<td>28</td>
<td>15 (54)</td>
<td>50</td>
<td>16 (32)</td>
<td>21 (\pm) 13</td>
<td>p<0.005</td>
</tr>
<tr>
<td>Polyarthritis of unknown origin</td>
<td>65</td>
<td>18 (28)</td>
<td>73</td>
<td>19 (26)</td>
<td>21 (\pm) 18</td>
<td>p<0.005</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>43</td>
<td>6 (18)</td>
<td>50</td>
<td>8 (16)</td>
<td>20 (\pm) 31</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Crohn's disease</td>
<td>36</td>
<td>2 (6)</td>
<td>37</td>
<td>2 (5)</td>
<td>12 (\pm) 9</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Normal controls</td>
<td>54</td>
<td>0 (0)</td>
<td>54</td>
<td>0 (0)</td>
<td>14 (\pm) 5</td>
<td>-</td>
</tr>
</tbody>
</table>

Includes samples obtained from patients during convalescence or remission.
patients were separated into groups with different disease activity (A–D). Twelve of 27 (44%) samples in the active untreated group A (27 patients) had increased levels of IC compared with 18 of 78 (23%) samples in the inactive group D (49 patients). The immune complex results of the controls aged 50 years or over and the rheumatoid arthritis patients are also shown. The Mann-Whitney U test showed a statistically significant difference between the active group A and the inactive group D (p < 0.04) as well as between group A and the controls aged 50 years or over (p < 0.04). There was a significant difference between the combined active disease groups A and B and the combined groups with no or little disease activity (C and D) (p < 0.05). However, there was no statistically significant difference between those samples from patients with some disease activity (groups A, B, and C) and those with no activity (group D).

Table 3 subdivides the PMR/GCA groups A–D into those with or without clinical evidence of arteritis at some time during the course of their disease. Complexes were more frequently raised in samples from patients who had clinical evidence of arteritis at some stage, although the difference in IC levels did not reach statistical significance by the chi-square test.

The results of serial studies with three IC assays in 2 patients before and after treatment with prednisone are shown in Figs. 2 and 3. In one of these patients (Fig. 2) 2 sera taken before treatment showed raised IC levels by all 3 assays. Subsequently PEG-CC and 125I-Clq binding IC levels returned to within the normal ranges, though the PEG-C4 IC levels remained raised. In the other patient (Fig. 3) IC levels were raised before treatment, and, while PEG-CC and PEG-C4 IC levels fell, as did the ESR, with treatment, 125I-Clq binding IC was only within the normal range intermittently. While in some of the 107 patients PEG-C4 IC levels were raised before treatment and then fell towards normal on treatment, in others no relationship was evident. ESR measurements on the other hand were invariably raised before treatment and subsequently dropped to normal.

Seventy-four serum samples from a third series of 24 PMR/GCA patients were investigated for IC by the PEG-CC, 125I-Clq, binding, and 125I-conglutinin binding assays (Table 4). Analysis of the results by the Spearman rank correlation test showed a correlation between the 125I-conglutinin binding and the 125I-Clq binding assay (r = 0.32, p < 0.03). A lower
Circulating immune complexes in polymyalgia rheumatica and giant cell arteritis

Fig. 2 Serial immune complex levels (●—● PEG-CC, ▲—▲ 125I-Clq binding, ■—■ PEG-C4) and ESR in a patient with giant cell arteritis.

Fig. 3 Serial immune complex levels (●—● PEG-CC, ▲—▲ 125I-Clq binding, ■—■ PEG-C4) and ESR in a patient with giant cell arteritis.
correlation was shown between the PEG-CC and
125I-conglutinin binding assays (r = 0.21, p<0.05),
but the PEG-CC showed no significant correlation
with the 125I-Clq binding assay (r = -0.08, p>0.1). However,
of the 18 samples abnormal in the PEG-CC assay 6 were also abnormal
by the 125I-Clq binding assay, but only 1 of the 18 samples was also abnormal
by the 125I-conglutinin binding assay. A total of 27 of
74 (37%) samples were abnormal by a combination
of all 3 assays.

Determinations of complement levels show that both the total haemolytic complement and C3 values
were within normal levels. Immunoglobulins were
found to be raised in both the active and inactive group. In the active group more than one immunogobulin
was often raised in the same patient, and 18 out of 39 patients in all had raised immunoglobulins.

The Spearman rank correlation test was used to
assess correlation between different measurements.
There is no significant correlation between the levels
of PEG-CC immune complexes and complement
CH50 (r = -0.03, p>0.05), ESR (r = 0.11,
p>0.05), CRP (r = 0.05, p>0.05) and a low negative correlation with C3 (r = -0.16, p<0.05).

Discussion

Immune complexes above the normal range have been
demonstrated in sera from PMR and GCA patients by the PEG-CC, PEG-C4, and 125I-Clq
binding assays though not by the 125I-conglutinin
binding test.

The IC assays employed in the serial studies showed similar patterns of increased IC levels during
active disease and normal levels at inactive stages of
the disease; this paralleled the fall in ESR on
treatment with prednisone. However, correlations
between the IC assays do not reflect the results of
comparing IC levels with the normal ranges. The
differences in results between the IC assays probably
reflect their abilities to detect ICs which are hetero-
geneous in respect of size, immunoglobulin class, and
complement fixing ability.9 Delespesse et al.10 have
reported an increase in IC levels with age as measured
by 125I-Clq binding. However, only 2 sera from 30
controls aged 50 years or over tested by the PEG-CC
assay fell outside the normal range. Although these
ages were not as high as those of the PMR/GCA
patients, the small proportion of results above the
normal range suggests that age is not a significant factor in producing the raised IC values in PMR/
GCA patients.

PEG-CC IC levels during active and inactive disease showed a significant difference, though this
was not confirmed statistically when the presence or
absence of arteritis (diagnosed clinically) was used.

Low levels of IC were present during inactive stages
of the disease: this is not confined to PMR/GCA
patients and is found in patients with systemic lupus
erythematosus and rheumatoid arthritis.11 12 The
possibility that the increased reactivity in PMR/GCA
sera found with the PEG-CC test was due to
terference by raised CRP levels has previously
been discounted,4 and is confirmed here, since no correlation was found between PEG-CC, IC, and
CRP levels and 2 other assays independently show
raised IC values. The presence or absence of IC also
depends to some extent on the type and intensity of
drug therapy applied. Thus, high levels of steroids
may have immunosuppressive as well as anti-
-inflammatory properties, and these may cause a
marked reduction in antibody production and hence
in IC levels. On the other hand, lower dose steroid
therapy may be sufficiently anti-inflammatory to
maintain suppression of clinical activity but insuffi-
ciently immunosuppressive to reduce IC formation
completely. Alternatively, the poor correlation
between disease activity and the presence of circu-
lating immune complexes may reflect the difficulty of
objectively measuring disease activity in PMR/GCA.

Immune deposits in the artery wall together with
antiglobulin activity,13 inflammatory cell infiltrations,14 and increase in circulating immunoblast
levels15 have already been demonstrated in patients
with PMR and GCA. The presence of raised levels of
IC lends further support to the hypothesis that there
is an immunological component to these diseases.
However, the finding of immune deposits in affected
tissue, commonly thought to indicate IC induced
disease, are also found in diseases where there is
ilittle else to suggest IC disease.16 The modest increase
in ICs without alteration in complement levels,
unlike the situation in SLE, together with the absence
of other serological abnormalities and the chronic
granulomatous appearance of the inflammatory
lesion in the involved vessels, are also not typical of
immune complex mediated disease process.17

We have demonstrated the presence of circulating
ICs in the serum from patients with PMR/GCA
during both active and inactive stages of the disease.
However, it is not known whether these ICs are
relevant to this disease process. Studies to establish
the nature of the ICs, both circulating and as immune
deposits, and in particular the antigen they contain,
could further our knowledge of the aetiology of
GCA. However, the ICs detected in this study do not
suggest that their routine measurement will aid
diagnosis or management of the condition.

We thank the Arthritis and Rheumatism Council for its
continued support, and the physicians at Addenbrooke’s
Hospital who referred patients to us.
Circulating immune complexes in polymyalgia rheumatica and giant cell arteritis

References