Estimation of IgM rheumatoid factors by fluorimetry

D. J. LEA AND D. J. WARD

From the Department of Rheumatology, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Salop SY10 7AG

SUMMARY Sheep red cells coated with rabbit IgG antibody may be used to detect IgM rheumatoid factors either by agglutination or microscopically by the fluorescence of antihuman IgM antibody conjugate bound to rheumatoid factors on the cell surface. By substituting for red cells the plastic surface of a filter disc coated with rabbit IgG it was possible to elute the bound conjugate and measure the fluorescence in a fluorimeter. The results of both the sheep cell agglutination test and the fluorescence test agreed quite well for the majority of sera; both tests seemed to reflect IgM rheumatoid factor concentrations in these sera. The difficulties encountered in attempting to define and measure accurately rheumatoid factor concentrations in a serum are emphasised.

The sensitivity and apparent simplicity of agglutination tests make them deservedly popular for the detection of abnormal levels of antibody. The clinical specificity of the sheep cell agglutination test (SCAT) renders it a valuable diagnostic aid, despite the fact that only high molecular weight IgM rheumatoid factors (RFs) are detected and the reagents are labile and difficult to standardise. Rabbit IgG bound to a hydrophobic latex gives agglutination titres with RFs which are related to SCAT titres (Grieble et al., 1969; Bach and Schmidt, 1972; Marcolongo and Saletti, 1974).

Following the procedure described by Estes et al. (1973), Hettenkofer and Muller (1975) used fluorescent antiglobulin reagents to titrate RFs bound to rabbit IgG-coated sheep cells microscopically and were able to distinguish between SCAT positive and SCAT negative sera. Since elution of antibodies from a plastic surface, using detergent (Salmon et al., 1969), is easily achieved we therefore adapted the microscopic fluorescence titration procedure to measure, in a conventional fluorimeter, labelled antihuman IgM antibody bound to a plastic surface bearing RF-rabbit IgG complexes.

Materials

Sera were obtained from patients attending clinics or admitted to the rheumatology ward and were stored immediately at -20°C. SCAT tests were performed within a few days and fluorescence tests within a few weeks whenever possible. Fluorescein-labelled antisera prepared by Dakopatts A/S were obtained from Mercia Diagnostics Ltd. Rabbit Cohn FII and Tween 20 were supplied by Koch-Light Ltd. Chemicals of analytical grade were used when available. Polypropylene discs, 9 mm in diameter were punched from P & S no. 12 filter cloth (kindly donated by P & S Textiles Ltd, Haslindsay, Rawtenstall, Lancs.). 2.5 ml flat-bottomed autoanalysis cups were used as containers.

Stock borate saline buffer (Kotoulas and Moroz, 1971) containing 0.15 M sodium chloride and 0.15 M boric acid was adjusted to pH 8.6 with sodium hydroxide and used as a 10% solution. Stock potassium phosphate buffer pH 7, 1 mol/l containing sodium azide (2 g/l) was diluted to 0.1 mol/l for use and Tween 20 (0.05%) was added to reduce non-specific binding effects (Engvall and Perlmann, 1972).

A stock solution (10 mg/ml) of rabbit FII in phosphate buffer was prepared and filtered for use. It was stored at -20°C. Alkaline sodium dodecyl sulphate (SDS) was prepared using 2 g/100 ml 0.1 N NaOH.

Method

Using a 1 cm diameter quartz cell in a Locarte digital fluorimeter with 13 stage PM tube and zinc lamp, the optimum sensitivity was achieved with a primary filter combination 805 Q (Ilford) and BG 12/2 mm (Schott) and secondary filters 805 Q, OG 515/2 mm, and Wratten 55 (Kodak). The instrument response was linear, turbidity interference minimal, and stability within experiments and between days high after a few minutes’ warm-up.

After treatment with ethanol and hot 40% caustic soda solution, the plastic discs were rinsed
thoroughly and packed loosely into a plastic tube. The discs were mixed with rabbit FII solution (2 μl per disc) in borate saline (30 μl per disc) for about 6 hours at room temperature. Each batch of 40 to 60 discs was rinsed, washed overnight in Tween phosphate buffer (50–100 ml), rinsed, and drained. The patient’s serum under investigation, diluted with Tween phosphate buffer to 100 μl, was added to a new autoanalysis cup and an FII-coated disc was put in, avoiding bubbles. The racks containing these cups were shaken gently, covered, and kept at room temperature for about 6 hours. Each disc was washed three times by filling the cup with Tween phosphate buffer and draining.

From a freshly prepared solution of anti-IgM conjugate and filtered normal rabbit serum in buffer (10 μl and 40 μl respectively in 1 ml) a portion of 100 μl was added to each cup and disc, and after gentle agitation the covered racks were kept overnight at room temperature. Three washes removed excess conjugate and bound conjugate was dissolved by adding 1 ml alkaline SDS solution to each cup. Fluorescence values of the eluates were read in an instrument standardised at 1·000 with 1 ml SDS solution containing a 5 μl portion of conjugate/serum in buffer, using a blank of SDS solution.

Results

Several variables of the assay procedure were examined. Dilute conjugate in Tween phosphate buffer lost activity slowly and therefore all protein solutions were diluted immediately before use to reduce the effect of denaturation in the assay. No significant fading of fluorescence of SDS solutions was detected after exposure for 30 minutes in the fluorimeter or after standing for 2 hours at room temperature. No more conjugate could be recovered from discs after SDS treatment. FII-coated discs bound approximately 0·1% of the conjugate under assay conditions and coated discs saturated with RFs about 5% of the conjugate. Substitution of 1% crystalline bovine plasma albumin for Tween 20 gave only a marginal improvement in these values.

Six coated discs were saturated with RFs by identical treatment with one serum in large excess. Treatment in the same assay with two anti-IgM conjugates standardised by the manufacturer but with different batch numbers gave different mean fluorescence values. Such variability is a characteristic of antisera to multivalent antigens. The amount of conjugate eluted from a disc is therefore not an exact measure of the amount of IgM bound to the disc.

Incubation for at least 5 hours with antibody at each stage was required for the highest sensitivity. Equal amounts of conjugate were bound by RF-coated discs rinsed three times or washed for 8 hours and loss of antibody from discs was therefore negligible. Fluorescence measurements showed that in the assay saturation of discs with RFs occurred at serum volumes of about 2 μl or more. The volume of fluorescence curves were, as expected, nonlinear. Sera gave different plateau values of fluorescence, indicating that the RFs bound were probably not all of the IgM class, although IgM molecules differ in the amount of conjugate they can bind (de Bruin and Klein, 1976). The maximum amount of conjugate bound represented about 5 ng human IgM bound to a disc.

After 1 μl samples of serum (titre 128) were treated with one, two, or three coated discs, IgM RFs were readily detectable in all the supernatants. The total amount of RF bound to a disc was therefore dependent upon the affinity as well as the overall concentration of RFs in the serum.

When a variety of solid absorbents, including polystyrene tubes, were tested the plastic filter discs gave better precision. One serum sample gave 90 replicate values with a standard deviation of 8% of the mean value in one experiment. However, the lower precision achieved in routine assays made it necessary to use three replicate discs for every serum dilution. Volumetric errors in the preparation of dilutions were insignificant. The complexity of the assay system meant that a simple correction factor could not apply to results from different experiments.

Five SCAT-positive sera were assayed at one level (0·8 μl) for IgG RFs, by using fluorescent anti-IgG conjugate, and gave fluorescence values between 0·17 and 0·355, which seemed unrelated to their SCAT titres. Similar serum samples heated at 56°C for 15 minutes gave consistently higher values, 0·256 to 0·583. There was no way of deciding which of the two procedures gave a better measure of IgG RFs in these sera. In contrast, no effect of heating the sera was evident when anti-IgM conjugate was used.

From the manufacturer’s data sheet on the fluorescence conjugate 100 μg IgM precipitates 1 ml of fluorescent antiserum under test conditions. In the assay, therefore, 5 ng IgM RF would bind conjugate represented by a fluorescence value of 1·0, without considering mass action and steric effects, and the contribution of low MW IgM RFs. Our fluorescence values of 0·4 to 1·0 which are commonly given by seropositive sera therefore represent the binding of 2 to 5 ng conjugate, values similar to those reported by Hay et al. (1975). Because our absorption results suggest that the major proportion of RFs in a serum remain in solution under assay conditions it seems likely that seropositive sera frequently have IgM RF
concentrations greatly in excess of 5 μg/ml, considering rabbit-specific RFs only.

A series of SCAT-positive and SCAT-negative sera from patients and normal individuals were assayed at a sample volume of 1 μl. The results of two experiments are shown in Figs. 1 and 2. Each experiment was composed of determinations done on several days. Within each experiment no significant change in sensitivity occurred, as shown by reassaying each day four representative sera. An unexpected combination of high fluorescence value and low SCAT titre was given by serum from a patient with myeloma and mixed connective tissue disease. Although the determination of both fluorescence values and SCAT titres were subject to experimental error, it was evident that a relationship existed between the titre of a serum and the amount of IgM in 1 μl serum, which was bound to immobilised rabbit IgG under assay conditions.

By constructing a standard curve using one standard serum at different volumes the fluorescence values for test sera at a fixed volume (0·8 μl) could be expressed in terms of the equivalent volume of standard determined at the same time. This approach was found inadequate as few sera could be examined in each experiment.

In order to use a purified, stable rabbit IgG antigen in place of Cohn fraction II, ovalbumin-coated discs were treated with rabbit antiovalbumin serum. Both antibody treated and ovalbumin control discs bound negligible amounts of fluorescent antihuman IgM conjugate under the usual assay conditions. The fluorescence values for two human sera were 0·1 and 0·3 with the ovalbumin-coated control discs, suggesting that these sera contained sufficient antiovalbumin antibodies to interfere with the RF assay.

Discussion

The SCAT and related red cell and latex tests are the only ones generally available for the demonstration of RFs. The disadvantage of these agglutination tests are well known and many attempts have been made to introduce new, quantitative tests which are claimed to be specific, accurate, and clinically valuable. Whereas immunoassay techniques for determining the concentration of homogeneous antigens and simple chemicals may be judged in terms of specificity, accuracy, and precision, greater problems arise in the measurement of heterogeneous antigens, such as parathyroid hormone and serum immunoglobulins. Highly selective antisera
are required (Grubb, 1973; Lea and Ward, 1975) and
the results may not be quantitative, though clinically
of value (Schmidt-Gayk et al., 1976).

The quantitation of antibody presents similar
problems. The antibody population in an antiserum
raised to a specific antigen is rarely homogeneous,
and antibodies of all immunoglobulin classes may
be present. The antigen may have many different
determinants, each with its own specific antibody
population and antibodies of low affinity may be
present in large amounts (Kim et al., 1974). Even the
simplest approach to the quantitation of one anti-
body (IgE) in a serum requires several measurements
to be made to take account of the equilibrium
between free antibody and that bound to allergen
(Bongrand et al., 1976). The amount of one antibody
bound to an insoluble antigen is thus influenced by
the experimental conditions chosen and is not
determined solely by the total amount present.

Clinical observations suggest that the SCAT test
provides the most useful evidence for the presence of
IgM RFs in a serum. We have made a basic assump-
tion that the titre of a serum reflects closely the
concentration of those IgM RFs able to react with
rabbit IgG determinants on the sheep cell surface.
Moreover our results could not be judged by any
independent criterion other than SCAT titres. On
this stated basis the evident relationship between
SCAT titre and fluorescence value, measured by our
technique, leads us to believe that the fluorescence
value of a serum is also a satisfactory index of IgM
RF concentration.

Norberg (1976) emphasised that independent
evidence is needed to prove valid any assay procedure
which purports to reflect IgG RF concentrations.
Lacking such evidence we were unable to decide if
either of the fluorescence assay procedures using
heated or unheated serum samples and anti-IgG
conjugate provided a satisfactory index of IgG RF
concentrations.

Compared to the radioimmunoassay technique
described by Hay et al. (1975) and Nineham et al.
(1976), the technique we developed has several
advantages. In the radioimmunoassay 50 μl of
patient’s serum in a total volume of 0.5 ml was used.
As only 1 μl serum in 100 μl total volume is required
for the fluorescence assay, the interference by
dissociable immune complexes (Abruzzo and Heimer,
1974) is reduced. Our choice of longer reaction times
likewise not only increased sensitivity, with a
reduction in serum concentration, but also allowed
equilibrium to be approached.

For routine purposes the preparation and purifica-
tion of radiolabelled antibody is tedious and
demanding. Not only are the techniques for the
critical testing of specificity well established for
fluorescent antisera (Chantler and Haire, 1972)
but the availability of these antisera fractionated
before and after labelling reduces the differences
between assays arising solely from differences
between conjugate preparations. It is important to
note that techniques using labelled antihuman IgM
antibody do not distinguish between human agglutin-
ating high MW IgM antibodies and the non-
agglutinating IgM antibodies of low MW.

Addition of unlabelled normal rabbit serum to the
fluorescent conjugate was essential to reduce non-
specific binding and the unwanted specific binding
of labelled rabbit IgG as antigen to the bound RFs
on the plastic discs. These precautions may account
for the much lower background uptake of conjugate by
plastic discs than was found, for example, in the
fluorescence assay of Cukor et al. (1976) who used
cyanogen bromide-treated paper loaded with pokew
allergen.

In conclusion, we suggest that the fluorescence test
provides an alternative method to the sheep cell
agglutination test for assaying sera containing rabbit-
specific IgM RFs, the results of the two tests com-
paring quite well. The values obtained are influenced
by the equilibrium between bound and free RFs and
the test cannot be quantitative, as chemical estima-
tions are, but the technique does seem to be valid.
In its present form it still suffers from the disadvantage
of day-to-day variability, common to many ‘solid-
phase’ tests, but appears to be better in this respect
than the SCAT test. A major cause of this variability
is probably the low affinity of RFs for rabbit IgG.
Fluorescence tests of a similar kind may be satis-
factory alternatives to many latex agglutination tests
and to others using radiolabelled or enzyme-labelled
reagents.

References
Abruzzo, J. L., and Heimer, R. (1974). The measurement of
IgG anti-IgG antibody in rheumatoid arthritis. Journal of
Immunological Methods, 4, 149–160.

specificity of rheumatoid factor determination. Zeitschrift
für Immunitätsforschung, 144, 42–48.

Bongrand, P., Vervloet, D., Depieds, R., and Charpin, J.
(1976). What can be measured with RAST? Journal of
Immunological Methods, 11, 197–212.

immunological specificity of fluorescein-labelled anti-
human IgM conjugates. Immunology, 23, 7–12.

Cukor, P., Woeber, M. E., Persiani, C., and Fermin, A.
(1976). Iodinated versus fluorescent labelling in the radio-
allergosorbent test (RAST) for the determination of serum
IgE levels. Journal of Immunological Methods, 12, 183–192.

radial immunodiffusion method for the quantitative
determination of human IgM. Evaluation of a modified

immunosorbent assay, ELISA. III. Quantitation of specific

Estimation of IgM rheumatoid factors by fluorimetry

