HLA antigens in systemic lupus erythematosus

C. DOSTÁL, D. IVÁNYI, H. MACUROVÁ, I. HÁNA, AND J. STREJČEK

From the Research Institute of Rheumatic Diseases; Institute of Dental Research; Institute of Clinical and Experimental Medicine; Postgraduate Medicinal and Pharmaceutical Institute of Rheumatic Diseases; and Department of Medicine, Charles University, Prague, Czechoslovakia

SUMMARY Forty-five patients suffering from systemic lupus erythematosus were studied in respect of their serologically defined HLA antigens. HLA-B8 antigen was found in 37.8% of patients as compared to 22% of controls. Individuals carrying the HLA-B8 antigen have a 2.15 times greater risk of developing systemic lupus erythematosus than those not carrying this antigen.

Associations between the antigens of the major histocompatibility system in man (HLA) and some diseases have been studied by several workers. In diseases where the involvement of autoantibodies in the pathogenesis was assumed or proved, an increased frequency of HLA-B8 was found, e.g. in chronic aggressive autoimmune hepatitis, myasthenia gravis, coeliac disease, thyrotoxicosis, insulin-dependent diabetes, idiopathic Addison's disease, and Sjögren's syndrome.

The distribution of HLA antigens in systemic lupus erythematosus (SLE) has been studied by several authors (Table 1). However, the results were not conclusive: generally only weak associations between SLE and HLA antigens were found by some and questionable results or lack of any association were found by others (Table 1).

The proved association between HLA-B8 and some autoimmune diseases together with the possible association of this antigen with SLE (Grumet et al., 1971; Goldberg et al., 1973; Stenzsky et al., 1973) attracted our attention. We therefore investigated the frequency of individual HLA antigens, with special reference to HLA-B8, in SLE patients in the Research Institute of Rheumatic Diseases and Clinical Ward of the Medical Faculty, Charles University, Prague.

Material and methods

A total of 45 Czech patients with SLE (38 females, 7 males) were investigated. Their ages ranged from 15 to 75 years, mean 44 years. The diagnosis of SLE was established by the presence of at least four

of the preliminary criteria for the classification of SLE proposed by the American Rheumatism Association and by the presence of antinuclear serum antibodies as determined by immunofluorescence (Coons and Kaplan, 1950). The controls consisted of 350 unrelated Caucasians whose HLA antigens had been typed in the same laboratory (ivašková et al., 1974).

HLA typing was performed by the lymphocytotoxic microtechnique using peripheral lymphocytes. 21 antigens were typed (Table 2). Three to six mono- or oligospecific antisera were used for the definition of each specificity. Differences in prevalence of HLA antigens between patients and controls were determined by the \(\chi^2 \) test. The corrected P value was calculated by multiplying P by the number of antigens tested. The relative risk for a given antigen, indicating how many times more frequent it is in individuals carrying this antigen than in those lacking it, was calculated according to Svejgaard et al. (1974).

Results

The distribution of HLA antigens in patients with SLE and in controls is given in Table 2. HLA-B8 was found in 37.8% of the patients as compared with 22% of the controls (P<0.025). Despite this difference, the corrected P value is not significant. The distribution of other HLA antigens compares well with that in the control group. The relative risk of SLE for HLA-B8 is 2.15 (the 95% confidence interval is 1.14-4.06).

The percentage of patients meeting the individual criteria for classification of SLE is given in Table 3. A multifactorial analysis of these and many other clinical and laboratory parameters and their possible relation to HLA-B8 antigen is in progress.
The increased frequency of HLA-B8 antigen found in our group of patients agrees with data previously published (Grumet et al., 1971; Goldberg et al., 1973; Stenzky et al., 1973) concerning an association between this antigen and SLE. This association was not found to be significant in any of the above studies.
reports nor in our study after P values had been corrected for the number of antigens tested. However, the combined relative risk for HLA-B8 calculated from all these data (467 SLE patients) is highly significant (Ivanyi et al., 1976).

In addition to HLA-B8, three cross-reacting antigens, HLA-Bw35, HLA-B5, and HLA-Bw15, have most frequently been mentioned in the literature in association with SLE (Table 1). It is interesting that while an increased frequency of HLA-B8 antigen has been described in several autoimmune diseases, an association of one of these, namely Graves’s disease, with HLA-Bw35 was found recently in Japanese patients (Grumet et al., 1975). Accordingly, the occurrence of different HLA antigens in association with the same disease in different ethnic groups may be expected for other HLA-B8-associated diseases as well. The association of SLE with HLA-Bw35 (Bitter et al., 1972), HLA-B5 (Nies et al., 1974; Stastny, 1972), and HLA-Bw15 antigens (Grumet et al., 1971), seen mainly in non-Caucasian patients (see Table 1), agrees with this assumption.

Further data are needed to permit calculation of the combined relative risk for the above-mentioned group of antigens in SLE. Nevertheless, the available data may indicate that Ir genes which control the ability to mount an autoimmune reaction occur in linkage disequilibrium with HLA-B8 in Caucasians and with antigens of the cross-reacting group HLA-Bw35, HLA-B5, and HLA-Bw15 in non-Caucasians. Interestingly, insulin-dependent juvenile diabetes mellitus is associated with both HLA-B8 and HLA-Bw15 antigens (Nerup et al., 1974). The associations between HLA antigens and some diseases are most frequently interpreted as the result of HLA-linked gene action controlling the immune response to various antigens and the susceptibility to certain viruses. This interpretation is based on the analogy of the HLA system with the mouse H-2 system, where these genes have already been precisely located. However, the mouse H-2 system is also associated with a genetic factor that regulates the level of complement and influences the metabolism of androgen hormones and cAMP (for review see Iványi, 1975). The possible analogies in man offer alternative interpretations of HLA and disease associations.

We are indebted to Dr. L. Mrklas for statistical evaluation of the data.

References

