Article Text

Download PDFPDF
Parsing multiomics landscape of activated synovial fibroblasts highlights drug targets linked to genetic risk of rheumatoid arthritis

Abstract

Objectives Synovial fibroblasts (SFs) are one of the major components of the inflamed synovium in rheumatoid arthritis (RA). We aimed to gain insight into the pathogenic mechanisms of SFs through elucidating the genetic contribution to molecular regulatory networks under inflammatory condition.

Methods SFs from RA and osteoarthritis (OA) patients (n=30 each) were stimulated with eight different cytokines (interferon (IFN)-α, IFN-γ, tumour necrosis factor-α, interleukin (IL)-1β, IL-6/sIL-6R, IL-17, transforming growth factor-β1, IL-18) or a combination of all 8 (8-mix). Peripheral blood mononuclear cells were fractioned into five immune cell subsets (CD4+ T cells, CD8+ T cells, B cells, natural killer (NK) cells, monocytes). Integrative analyses including mRNA expression, histone modifications (H3K27ac, H3K4me1, H3K4me3), three-dimensional (3D) genome architecture and genetic variations of single nucleotide polymorphisms (SNPs) were performed.

Results Unstimulated RASFs differed markedly from OASFs in the transcriptome and epigenome. Meanwhile, most of the responses to stimulations were shared between the diseases. Activated SFs expressed pathogenic genes, including CD40 whose induction by IFN-γ was significantly affected by an RA risk SNP (rs6074022). On chromatin remodelling in activated SFs, RA risk loci were enriched in clusters of enhancers (super-enhancers; SEs) induced by synergistic proinflammatory cytokines. An RA risk SNP (rs28411362), located in an SE under synergistically acting cytokines, formed 3D contact with the promoter of metal-regulatory transcription factor-1 (MTF1) gene, whose binding motif showed significant enrichment in stimulation specific-SEs. Consistently, inhibition of MTF1 suppressed cytokine and chemokine production from SFs and ameliorated mice model of arthritis.

Conclusions Our findings established the dynamic landscape of activated SFs and yielded potential therapeutic targets associated with genetic risk of RA.

  • synovitis
  • fibroblasts
  • arthritis
  • rheumatoid
  • cytokines
  • autoimmune diseases

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.