Article Text

Download PDFPDF

Changing the wolf from outside: how microbiota trigger systemic lupus erythematosus
Free
  1. Isabelle Peene1,2,
  2. Dirk Elewaut1,2
  1. 1 Unit Molecular Immunology and Inflammation, Inflammation Research Center, VIB-Ghent University, Ghent, Belgium
  2. 2 Department of Rheumatology, University Hospital Ghent, Gent, Belgium
  1. Correspondence to Dr Dirk Elewaut, Unit Molecular Immunology and Inflammation, Inflammation Research Center, VIB-Ghent University, Ghent 9052, Belgium; dirk.elewaut{at}ugent.be

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disorder affecting multiple organ systems including skin, joint and several internal organs such as kidney, heart or lung. A hallmark of this disease is the development of circulating antibodies against nuclear antigens and immune complex formation. The best-known antibodies are directed against native DNA and are prognostic for development of lupus nephritis. The processes resulting to the cascade of events culminating in the clinical features of SLE are only partially understood and involve among others, defective clearance of apoptotic cells and enhanced DNA damage to ultraviolet irradiation, and netosis1 2 (figure 1). It has also been suggested for a long time that certain microbial triggers could play a role in the onset of SLE, supported by early reports that antibody responses to nucleic acids/nucleoproteins were found in association with certain bacterial infections. More recently, more definitive proof of concept studies using germ-free and reconstituted mice highlighted that intestinal microbiota are able to drive development of systemic autoantibody responses.3 4 However, whether similar processes underlie development of lupus nephritis and anti-DNA antibodies was unclear.

Figure 1

Integrating intestinal microbiota into systemic lupus erythematosus (SLE) pathogenesis. (A) Exposure to various sterile and/or infectious stimuli can lead to apoptosis or NETosis contributing to release of modified self-antigen (DNA). Genetic susceptibility and/or defective clearance results in presentation of these modified self-antigens to T cells followed by B cell activation and eventually production of anti-DNA antibodies, well-known for their association with lupus nephritis. (B) Dysbiosis in patients with SLE with fivefold overabundance of Ruminococcus g navus (RG) leads to barrier disruption and loss of systemic tolerance …

View Full Text

Linked Articles