Article Text

Download PDFPDF
Extended report
Gene copy-number variations (CNVs) of complement C4 and C4A deficiency in genetic risk and pathogenesis of juvenile dermatomyositis
  1. Katherine E Lintner1,
  2. Anjali Patwardhan1,
  3. Lisa G Rider2,
  4. Rabheh Abdul-Aziz1,
  5. Yee Ling Wu1,
  6. Emeli Lundström3,
  7. Leonid Padyukov3,
  8. Bi Zhou1,
  9. Alaaedin Alhomosh1,
  10. David Newsom1,†,
  11. Peter White1,
  12. Karla B Jones1,
  13. Terrance P O'Hanlon2,
  14. Frederick W Miller2,
  15. Charles H Spencer1,
  16. Chack Yung Yu1
  1. 1Department of Pediatrics, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
  2. 2Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA
  3. 3Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
  1. Correspondence to Professor Chack Yung Yu, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; chack-yung.yu{at}nationwidechildrens.org

Abstract

Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM.

Methods The study population included 105 patients with JDM and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and qPCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 patients with JDM and seven controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR.

Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed in JDM versus controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of patients with JDM compared with 18.2% of controls (OR=3.00 (1.87 to 4.79), p=8.2×10−6). Patients with JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.0025). Microarray profiling of blood RNA revealed upregulation of type I interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients.

Conclusions Complement C4A deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background.

  • Autoimmune Diseases
  • Dermatomyositis
  • Epidemiology
  • Gene Polymorphism
  • Disease Activity

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.