Article Text
Abstract
Objective To examine the effect of hypoxia on Signal Transducer and Activator of Transcription 3 (STAT3)-induced pro-inflammatory pathways in rheumatoid arthritis (RA).
Methods Detection of phospho-STAT3 was assessed in RA synovial tissue and fibroblasts (RASFC) by immunohistology/immunofluorescence. Primary RASFCs and a normal synoviocyte cell line (K4IM) were cultured under hypoxic and normoxic conditions±Stat3-siRNA, HIF-siRNA or WP1066 (JAK2-inhibitor). HIF1α, p-STAT3, p-STAT1 and Notch-1IC protein expression were analysed by western blot. Functional mechanisms were quantified by invasion chamber, matrigel and migration assays. IL-6, IL-8, IL-10 and matrixmetalloproteinases (MMP)-3 were quantified by ELISA. Notch-1 receptor, its DLL-4 ligand and downstream target genes (hrt-1, hrt-2) were quantified by real-time PCR. The effect of WP1066 on spontaneous secretion of pro/anti-inflammatory cytokines and Notch signalling was examined in RA synovial explants ex vivo.
Results p-STAT3 was increased in RA synovium compared with control (p<0.05). Hypoxia induced p-STAT3, p-STAT1 and HIF1α expression, an effect blocked by Stat3-siRNA and WP1066. Hypoxia-induced cell invasion, migration and cytokine production were inhibited by Stat3-siRNA (p<0.05) and WP1066 (p<0.05). While HIF1α siRNA inhibited hypoxia-induced p-STAT3 detection, Stat3-siRNA also inhibited hypoxia-induced HIF1α. Furthermore, hypoxia-induced Notch-1IC, DLL4, hrt-1 and -2 expression were significantly inhibited by WP1066 (p<0.05). Finally, in RA synovial explant cultures ex vivo, WP1066 decreased spontaneous secretion of IL-6, IL-8 and MMP3 (p<0.05), Notch-1 mRNA (p<0.05) and induced IL-10 (p<0.05).
Conclusions This is the first study to provide evidence of a functional link between HIF1α, STAT3 and Notch-1 signalling in the regulation of pro-inflammatory mechanisms in RA, and further supports a role for STAT blockade in the treatment of RA.
- Rheumatoid Arthritis
- Cytokines
- Fibroblasts