Article Text

Download PDFPDF

Extended report
Revisiting comorbidities in gout: a cluster analysis
  1. Pascal Richette1,
  2. Pierre Clerson2,
  3. Laure Périssin3,
  4. René-Marc Flipo4,
  5. Thomas Bardin1
  1. 1Université Paris 7, UFR médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Lariboisière, Fédération de Rhumatologie, Paris, Cedex 10, France
  2. 2Orgamétrie Biostatistiques, Roubaix, France
  3. 3Ménarini, Rungis, France
  4. 4Service de Rhumatologie, Université de Lille 2, Hôpital Roger-Salengro, CHRU de Lille, Lille, France
  1. Correspondence to Professor Pascal Richette, Université Paris 7, UFR médicale, Assistance Publique-Hôpitaux de Paris, Fédération de Rhumatologie, Hôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris cedex 10, France; pascal.richette{at}


Objectives The reciprocal links between comorbidities and gout are complex. We used cluster analysis to attempt to identify different phenotypes on the basis of comorbidities in a large cohort of patients with gout.

Methods This was a cross-sectional multicentre study of 2763 gout patients conducted from November 2010 to May 2011. Cluster analysis was conducted separately for variables and for observations in patients, measuring proximity between variables and identifying homogeneous subgroups of patients. Variables used in both analyses were hypertension, obesity, diabetes, dyslipidaemia, heart failure, coronary heart disease, renal failure, liver disorders and cancer.

Results Comorbidities were common in this large cohort of patients with gout. Abdominal obesity, hypertension, metabolic syndrome and dyslipidaemia increased with gout duration, even after adjustment for age and sex. Five clusters (C1–C5) were found. Cluster C1 (n=332, 12%) consisted of patients with isolated gout and few comorbidities. In C2 (n=483, 17%), all patients were obese, with a high prevalence of hypertension. C3 (n=664, 24%) had the greatest proportion of patients with type 2 diabetes (75%). In C4 (n=782, 28%), almost all patients presented with dyslipidaemia (98%). Finally, C5 (n=502, 18%) consisted of almost all patients with a history of cardiovascular disease and renal failure, with a high rate of patients receiving diuretics.

Conclusions Cluster analysis of comorbidities in gout allowed us to identify five different clinical phenotypes, which may reflect different pathophysiological processes in gout.

  • Gout
  • Cardiovascular Disease
  • Epidemiology

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.