Article Text

Download PDFPDF
EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the standing committee for international clinical studies including therapeutics (ESCISIT)
  1. W Zhang1,
  2. M Doherty1,
  3. E Pascual2,
  4. T Bardin3,
  5. V Barskova4,
  6. P Conaghan5,
  7. J Gerster6,
  8. J Jacobs7,
  9. B Leeb8,
  10. F Lioté9,
  11. G McCarthy10,
  12. P Netter11,
  13. G Nuki12,
  14. F Perez-Ruiz13,
  15. A Pignone14,
  16. J Pimentão15,
  17. L Punzi16,
  18. E Roddy1,
  19. T Uhlig17,
  20. I Zimmermann-Gòrska18
  1. 1Academic Rheumatology, University of Nottingham, Nottingham, UK
  2. 2Sección de Rheumatologia, Hospital General Universitario de Alicante, Alicante, Spain
  3. 3Fédération de Rhumatologie, Hôpital Lariboisière, Paris, France
  4. 4Institute of Rheumatology RAMS, Moscow, Russian Federation
  5. 5Academic Unit of Musculoskelatal Diseases, University of Leeds, Leeds, UK
  6. 6Service de Rhumatologie, Hôpital Nestlé, CH 1011 Lausanne-CHUV, Switzerland
  7. 7Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
  8. 8Second Department of Medicine, Lower Austrian Centre for Rheumatology, Stockerau, Austria
  9. 9Fédération de Rhumatologie and INSERM U606, IFR 139, Hôpital Lariboisière, Paris, France
  10. 10Division of Rheumatology, Mater Misericordiae University Hospital, Dublin, Ireland
  11. 11UMR7561 CNRS-UHP, Physiopathologie et Pharmacologie Articulaire, Universite Henri Poincare, Vandoeuvre Les Nancy, France
  12. 12Osteoarticular Research Group, University of Edinburgh, Edinburgh, UK
  13. 13Sección de Rheumatologia, Hospital de Cruces, Baracaldo, Spain
  14. 14Departmento Medicina Interna, University of Florence, Florence, Italy
  15. 15Rheumatology Unit, Hospital Egas Moniz, Lisbon, Portugal
  16. 16Rheumatology Unit, University of Padova, Padova, Italy
  17. 17Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway
  18. 18Department of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
  1. Correspondence to:
    Dr W Zhang
    Academic Rheumatology, University of Nottingham, Clinical Sciences Building, City Hospital, Nottingham NG5 1PB, UK; weiya.zhang{at}nottingham.ac.uk

Abstract

Objective: To develop evidence based recommendations for the diagnosis of gout.

Methods: The multidisciplinary guideline development group comprised 19 rheumatologists and one evidence based medicine expert, representing 13 European countries. Ten key propositions regarding diagnosis were generated using a Delphi consensus approach. Research evidence was searched systematically for each proposition. Wherever possible the sensitivity, specificity, likelihood ratio (LR), and incremental cost-effectiveness ratio were calculated for diagnostic tests. Relative risk and odds ratios were estimated for risk factors and co-morbidities associated with gout. The quality of evidence was categorised according to the evidence hierarchy. The strength of recommendation (SOR) was assessed using the EULAR visual analogue and ordinal scales.

Results: 10 key propositions were generated though three Delphi rounds including diagnostic topics in clinical manifestations, urate crystal identification, biochemical tests, radiographs, and risk factors/co-morbidities. Urate crystal identification varies according to symptoms and observer skill but is very likely to be positive in symptomatic gout (LR = 567 (95% confidence interval (CI), 35.5 to 9053)). Classic podagra and presence of tophi have the highest clinical diagnostic value for gout (LR = 30.64 (95% CI, 20.51 to 45.77), and LR = 39.95 (21.06 to 75.79), respectively). Hyperuricaemia is a major risk factor for gout and may be a useful diagnostic marker when defined by the normal range of the local population (LR = 9.74 (7.45 to 12.72)), although some gouty patients may have normal serum uric acid concentrations at the time of investigation. Radiographs have little role in diagnosis, though in late or severe gout radiographic changes of asymmetrical swelling (LR = 4.13 (2.97 to 5.74)) and subcortical cysts without erosion (LR = 6.39 (3.00 to 13.57)) may be useful to differentiate chronic gout from other joint conditions. In addition, risk factors (sex, diuretics, purine-rich foods, alcohol, lead) and co-morbidities (cardiovascular diseases, hypertension, diabetes, obesity, and chronic renal failure) are associated with gout. SOR for each proposition varied according to both the research evidence and expert opinion.

Conclusions: 10 key recommendations for diagnosis of gout were developed using a combination of research based evidence and expert consensus. The evidence for diagnostic tests, risk factors, and co-morbidities was evaluated and the strength of recommendation was provided.

  • ESCISIT, EULAR Standing Committee for International Clinical Studies Including Therapeutics
  • EULAR, European League Against Rheumatism
  • ICER, incremental cost-effectiveness ratio
  • LR, likelihood ratio
  • MSU, monosodium urate
  • SOR, strength of recommendation
  • SUA, serum uric acid
  • VAS, visual analogue scale
  • EULAR
  • guidelines
  • gout
  • diagnosis

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • See linked article, p 1312

  • Published Online First 2 June 2006

Linked Articles