Article Text

Download PDFPDF
Pathogenesis of human parvovirus B19 in rheumatic disease
  1. Jonathan R Kerr

    Email: (jonathankerr@hotmail.com)

  1. Department of Medical Microbiology and Virology, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Human parvovirus B19, discovered in 19751 and first linked with human disease in 1981,2 is a small single stranded DNA virus classified within the family Parvoviridae, and the genus Erythrovirus, having tropism primarily for erythroid precursors. B19 is the only parvovirus which has been clearly linked with disease in humans. It replicates only in human cells and is autonomous, not requiring the presence of a helper virus.

Acute B19 virus infection is classically associated with the childhood rash illness, erythema infectiosum (EI), arthralgia, fetal death, and transient aplastic crisis (TAC) in those with shortened red cell survival. However, it has been assumed that in those with a normal immune system, the virus has a relatively simple pathogenesis and that after the acute phase the virus is cleared by a specific humoral immune response. However, increasingly B19 virus and B19 infection have been reported in association with quite atypical and unpredictable findings based on previous assumptions. For example, persistence of the virus in various tissues after acute infection in apparently normal subjects and the association of B19 infection with various connective tissue and autoimmune diseases. This paper will therefore summarise present knowledge of the virus, its known and potential pathogenetic mechanisms, and its associations with human disease, with an emphasis on rheumatic disease.

Virology

The B19 genome consists of a single stranded linear molecule of 5596 nucleotides, which is composed of an internal coding sequence of 4830 nucleotides flanked by terminal repeat sequences of 383 nucleotides each.3 These terminal repeat sequences are imperfect palindromes and fold back on themselves to form hairpin loops.4 Viral replication is thus self primed by the 3′ terminus,5 and in minute virus of mice, a related parvovirus, has recently been shown to require the host cell transcriptional modulator, …

View Full Text