Article Text

Download PDFPDF
Formation of calcium pyrophosphate crystals in vitro: implications for calcium pyrophosphate crystal deposition disease (pseudogout)
  1. P. R. Hearn,
  2. R. G. G. Russell
  1. Department of Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX

    Abstract

    Little is known about how calcium pyrophosphate dihydrate (CaPPD) crystals form in vivo and give rise to chondrocalcinosis or pseudogout (pyrophosphate arthropathy or calcium pyrophosphate crystal deposition disease). In this study a simple method has been devised to define the conditions necessary for the deposition of crystals in vitro. Crystal formation is monitored by 45Ca in the presence of 1·5 mmol/l Ca and increasing concentrations of inorganic pyrophosphate (PPi) under simulated physiological conditions of pH and ionic strength. Concentrations of PPi required to initiate crystal formation were about 40 mmol/l in the absence and 175 mmol/l in the presence of 0·5 mmol/l Mg2+ at pH 7·4. Less PPi was required at higher pH values. The naturally occurring monoclinic and triclinic forms of CaPPD were produced after prolonged incubation in vitro, but the initial deposits were amorphous or orthorhombic. The physiological significance of these observations is discussed. Since much higher concentrations of PPi are required to form crystals in vitro than are found to occur naturally in synovial fluids from patients with pyrophosphate arthropathy, it is suggested that crystals are more likely to deposit initially within cartilage and that nucleating mechanisms may be important in vivo. Since other workers have observed a slow interconversion of other calcium pyrophosphate crystal forms into monoclinic and triclinic allomorphs under laboratory conditions, the reason why only these 2 forms occur under clinical conditions may reflect the long time available in vivo for the formation of crystals.

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.