Inhibition of human colony-forming-unit erythroid by tumor necrosis factor requires accessory cells

J Clin Invest. 1990 Aug;86(2):538-41. doi: 10.1172/JCI114741.

Abstract

Recombinant tumor necrosis factor (rTNF) inhibits erythropoiesis in vivo and in vitro. To study the mechanism of this inhibition, the effect of rTNF on highly purified human CFU-erythroid (E) (mean purity 63.5%), which were generated from peripheral blood burst-forming units-erythroid (BFU-E), was compared to its effect on unpurified human marrow CFU-E (mean purity 0.21%). Although growth of colonies from marrow CFU-E was inhibited by rTNF, no significant effect on purified BFU-E-derived CFU-E colony growth was found. Removal of accessory marrow cells by soy bean agglutinin (SBA) ablated the inhibition of marrow CFU-E colonies by rTNF. Inhibition of colony growth was then restored by adding back SBA+ cells, but not by adding T lymphocytes or adherent cells. Conditioned medium prepared from bone marrow mononuclear cells stimulated by rTNF inhibited the growth of colonies from highly purified BFU-E derived CFU-E resistant to direct inhibition by rTNF. These findings indicate that rTNF does not directly inhibit CFU-E, but requires accessory cells to decrease erythropoiesis. These accessory cells reside in the SBA+ cell fraction, but are neither T cells nor adherent cells. Therefore, in order to produce anemia, TNF must induce release or production of a factor that directly inhibits erythroid colony growth.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bone Marrow Cells*
  • Colony-Forming Units Assay
  • Erythropoiesis / drug effects*
  • Humans
  • In Vitro Techniques
  • Recombinant Proteins
  • Tumor Necrosis Factor-alpha / pharmacology*

Substances

  • Recombinant Proteins
  • Tumor Necrosis Factor-alpha