Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology

Matrix Biol. 2002 Mar;21(2):185-95. doi: 10.1016/s0945-053x(01)00196-2.

Abstract

Our aim was to correlate the activity of matrix metalloproteinases (MMPs) with denaturation and the turnover of collagen in normal and pathological human tendons. MMPs were extracted from ruptured supraspinatus tendons (n=10), macroscopically normal ("control") supraspinatus tendons (n=29) and normal short head of biceps brachii tendons (n=24). Enzyme activity was measured using fluorogenic substrates selective for MMP-1, MMP-3 and enzymes with gelatinolytic activity (MMP-2, MMP-9 and MMP-13). Collagen denaturation was determined by alpha-chymotrypsin digestion. Protein turnover was determined by measuring the percentage of D-aspartic acid (% D-Asp). Zymography was conducted to identity specific gelatinases. MMP-1 activity was higher in ruptured supraspinatus compared to control supraspinatus and normal biceps brachii tendons (70.9, 26.4 and 11.5 fmol/mg tendon, respectively; P<0.001). Gelatinolytic and MMP-3 activities were lower in normal biceps brachii and ruptured supraspinatus compared to control supraspinatus (gelatinase: 0.18, 0.23 and 0.82 RFU/s/mg tendon respectively; P<0.001; MMP-3: 9.0, 8.6 and 55 fmol/mg tendon, respectively; P<0.001). Most gelatinase activity was shown to be MMP-2 by zymography. Denatured collagen was increased in ruptured supraspinatus compared to control supraspinatus (20.4% and 9.9%, respectively; P<0.001). The % D-Asp content increased linearly with age in normal biceps brachii but not in control supraspinatus and was significantly lower in ruptured supraspinatus compared to age-matched control tendons (0.33 and 1.09% D-Asp, respectively; P<0.01). We conclude that the short head of biceps brachii tendons show little protein turnover, whereas control supraspinatus tendons show relatively high turnover mediated by the activity of MMP-2, MMP-3 and MMP-1. This activity is thought to represent a repair or maintenance function that may be associated with an underlying degenerative process caused by a history of repeated injury and/or mechanical strain. After tendon rupture, there was increased activity of MMP-1, reduced activity of MMP-2 and MMP-3, increased turnover and further deterioration in the quality of the collagen network. Tendon degeneration is shown to be an active, cell-mediated process that may result from a failure to regulate specific MMP activities in response to repeated injury or mechanical strain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Aspartic Acid / metabolism
  • Collagen / metabolism*
  • Humans
  • Matrix Metalloproteinases / metabolism*
  • Middle Aged
  • Protein Denaturation
  • Tendons / metabolism*
  • Tendons / pathology

Substances

  • Aspartic Acid
  • Collagen
  • Matrix Metalloproteinases