Skip to main content
Log in

Adverse Effects of Bisphosphonates

A Comparative Review

  • Review Articles
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

The bisphosphonates comprise a new class of drugs, and are increasingly being used to treat bone diseases characterised by increased osteoclastic bone resorption. These compounds are generally well tolerated, but toxicity may vary considerably from one compound to another.

Dosages of etidronic acid above 800 mg/day impair the normal skeletal mineralisation and this may be associated with the appearance of fractures, but at the doses used for the treatment of osteoporosis, none of the bisphosphonates induce clinical or histological signs of impaired mineralisation.

The skeletal half-life of bisphosphonates is of the order of several years, but this appears to be of little clinical consequence since the pharmacological effect is of relatively short duration. The mechanical properties of the skeleton of animals treated over long periods with high doses of various bisphosphonates have been shown to be perfectly preserved. However, in growing individuals, excess inhibition of bone remodelling might induce osteopetrotic-like alterations.

When high doses of amino-bisphosphonates are given to patients who have never received bisphosphonate therapy, the patients may experience fevers up to 39°C for 1 to 3 days, associated with transient haematological changes resembling a typical acute-phase response.

Rapid intravenous injection of bisphosphonates at doses greater than 200 to 300mg may cause severe renal failure; this can be prevented by slowing the rate of infusion (<200 mg/h). Administration of high doses of bisphosphonates to patients with high bone turnover may induce a rapid and transient drop in serum calcium which is seldom symptomatic.

The gastrointestinal absorption of bisphosphonates is low, and they must be taken without food. Oral amino derivatives may induce dose-related serious gastrointestinal lesions, with the sporadic appearance of erosive oesophagitis.

Amino-bisphosphonate administration has been also associated with the sporadic occurrence of uveitis, scleritis and phlebitis and, in single cases, with irritative reactions at the skin, peritoneum and pericardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleisch H. Bisphosphonates — history and experimental basis. Bone 1987; 8 Suppl. 1: 23–8

    Google Scholar 

  2. Fleisch H. Bisphosphonates: pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 1991; 42: 919–44

    PubMed  CAS  Google Scholar 

  3. Nixon GA, Buehler EV, Newmann EA. Preliminary safety assessment of disodium etidronate as an additive to experimental oral hygiene products. Toxicol Appl Pharmacol 1972; 22: 661–71

    PubMed  CAS  Google Scholar 

  4. Nolen GA, Buehler EV. The effects of disodium etidronate on the reproductive functions and embryogeny of albino rats and New Zealand rabbits. Toxicol Appl Pharmacol 1971; 18: 548–61

    PubMed  CAS  Google Scholar 

  5. Gertz BJ, Holland SD, Kline WF, et al. Clinical pharmacology of alendronate disodium. Osteoporos Int 1993; 3 Suppl.: 13–6

    Google Scholar 

  6. Halloran BP, De Luca HF. Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat. J Nutr 1980; 110: 1573–80

    PubMed  CAS  Google Scholar 

  7. Francis MD, Slough CL. Acute intravenous infusion of disodium dihydrogen (1-hydroxyethylidene)diphosphonate: mechanism of toxicity. J Pharm Sci 1984; 8: 1097–100

    Google Scholar 

  8. Troehler U, Bonjour JP, Fleisch H. Renal secretion of diphosphonates in rats. Kidney Int 1975; 8: 6–13

    PubMed  CAS  Google Scholar 

  9. Troehler U, Bonjour JP, Fleisch H. Renal transport of bisphosphonates: accumulation by renal cortical slices enhanced by calcium phosphate ions. J Lab Clin Med 1985; 106: 23–9

    PubMed  CAS  Google Scholar 

  10. Lin JH, Chen IW, Deluna FA, et al. Renal handling of alendronate in rats. An uncharacterized renal transport system. Drug Metab Dispos 1992; 20: 608–13

    PubMed  CAS  Google Scholar 

  11. Cal JC, Daley-Yates PT. Disposition and nephrotoxicity of 3-amino-hydroxypropylidene-1,1-bisphosphonate (APD) in rats and mice. Toxicology 1990; 65: 179–97

    PubMed  CAS  Google Scholar 

  12. Brazy PC, Gullans SR, Mandel L, et al. Metabolic requirement for inorganic phosphate by the rabbit proximal tubule. J Clin Invest 1982; 70: 53–62

    PubMed  CAS  Google Scholar 

  13. Alden CL, Burns JL, Parker RD, et al. Characterization of the early ultrastructural and biochemical events occuring in dichloromethane diphosphonate nephrotoxicity. Toxicol Pathol 1990; 4: 661–6

    Google Scholar 

  14. Gralpel P, Bentley P, Fritz H, et al. Reproduction toxicity studies with pamidronate. Arzneimittel Forschung 1992; 42: 654–67

    Google Scholar 

  15. Minsken DH, Manson JM, Chennekatu PP. Effects of the bisphosphonate, Alendronate, on parturition in the rats. Toxicol Appl Pharmacol 1993; 121: 217–23

    Google Scholar 

  16. Adami S, Zamberlan N, Mian M, et al. Duration of the effects of intravenous alendronate in postmenopausal women and in patients with primary hyperparathyroidism. Bone Miner 1994; 5: 75–82

    Google Scholar 

  17. Netelenbos JC, Van Ginkel FC, Lips P, et al. Effect of a single infusion of aminohydroxypropylidene on calcium and bone metabolism in healthy volunteers monitored during 2 months. J Clin Endocrinol Metab 1991; 72: 223–8

    PubMed  CAS  Google Scholar 

  18. Powell JH, De Mark BR. Clinical pharmacokinetics of diphosphonates. In: Garattini S, editor. Bone resorption metastases and diphosphonates. New York: Raven Press, 1985: 41–9

    Google Scholar 

  19. Fogelman I, Bessent RG, Turner JF, et al. The use of whole-body retention of Tc-99m diphosphonate in the diagnosis of metabolic bone disease. J Nucl Med 1978; 19: 270–5

    PubMed  CAS  Google Scholar 

  20. Sato M, Grasser W, Endo N, et al. Bisphosphonate action: alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991; 88: 2095–105

    PubMed  CAS  Google Scholar 

  21. Balena R, Toolan BC, Shea M, et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry and bone strength in ovariectomized non human primates. J Clin Invest 1993; 2577–86

    Google Scholar 

  22. Jowsey J, Holley KE, Linman JW. Effect of sodium etidronate in adult cats. J Lab Clin Med 1970; 76: 126–33

    PubMed  CAS  Google Scholar 

  23. King WR, Francis MD, Michael WR. Effect of disodium ethane-1-hidroxy-1,1-diphosphonate on bone formation. Clin Orthop 1971; 78: 251–70

    PubMed  CAS  Google Scholar 

  24. Schenk R, Merz WA, Muhlbauer R, et al. Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (C12MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysys and metaphysys ofrats. Calcif Tissue Res 1973; 11: 196–214

    PubMed  CAS  Google Scholar 

  25. Larsson A. The short-term effects of high doses of ethylene-1-hydroxy-1,1-diphosphonates upon early dentin formation. Calcif Tissue Res 1974; 16: 109–27

    PubMed  CAS  Google Scholar 

  26. Jowsey J, Riggs BL, Kelly PJ, et al. The treatment of osteoporosis with disodium ethane-1-hydroxy-1,1-diphosphonate. J Lab Clin Med 1971; 78: 574–84

    PubMed  CAS  Google Scholar 

  27. de Vries HR, Bijvoet OLM. Results of prolonged treatment of Paget’s disease of bone with disodium ethane-1-hydroxy-1, 1-diphosphonate (EHDP). Neth J Med 1974; 17: 281–9

    PubMed  Google Scholar 

  28. Meunier P, Alexandre C, Khairi MRA, et al. Dose-dependent effects of EHDP on dynamics of bone remodeling in Paget’s disease: studies in involved and non-involved areas. Calcif Tissue Res 1977; 24: 17

    Google Scholar 

  29. Nagant de Deuxchains C, Rombouts-Lindemans C, Heiaux JP, et al. Roentgenologic evaluation of the action of the disphosphonate EHDP and of the combined therapy (EHDP and calcitonin) in Paget’s disease of bone. In: Maclntyre I, Szelka M, editors. Molecular endocrinology. Amsterdam: Elsevier/North-Holland Biomedical Press, 1979: 405–33

    Google Scholar 

  30. Reiner M, Sautter V, Olah A, et al. Disphosphonate treatment in myositis ossificans progressiva. In: Caniggia A, editor. Etidronate. Pisa: Istituto Gentili, 1980: 237

    Google Scholar 

  31. Johnston Jr CC, Altman RD, Canfield RE, et al. Review of fracture experience during treatment of Paget’s disease of bone with etidronate disodium (EHDP). Clin Orthop 1983; 172: 186–94

    PubMed  Google Scholar 

  32. Boyce BF, Fogelman I, Ralston S, et al. Focal osteomalacia due to low dose diphosphonate therapy in Paget’s disease. Lancet 1984; i: 821–4

    Google Scholar 

  33. Storm T, Steiniche T, Thamsborg G, et al. Changes in bone histomorphometry after long-term treatment with intermittent, cyclic etidronate for postmenopausal osteoporosis. J Bone Miner Res 1993; 8(2): 199–208

    PubMed  CAS  Google Scholar 

  34. Ott SM, Woodson GC, Huffer WE, et al. Bone histomorphometric changes after cyclic therapy with phosphate and etidronate disodium in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 1994; 78: 968–72

    PubMed  CAS  Google Scholar 

  35. Axelrodt DW, Teitelbaum SL. Results of long-term cyclical etidronate therapy: bone histomorphometry and clinical correlates. J Bone Miner Res 1994; 9 Suppl. 1: 136

    Google Scholar 

  36. Adamson BR, Gallacher SJ, Byars J, et al. Mineralisation defects with pamidronate therapy for Paget’s disease. Lancet 1993; 342: 1459–60

    PubMed  CAS  Google Scholar 

  37. Flora L, Hassing GS, Cloyd GG, et al. The long-term skeletal effects of EHDP in dogs. Metab Bone Dis Relat Res 1981; 4/5: 289–300

    Google Scholar 

  38. Flora L, Hassing GS, Parfitt AM, et al. Comparative skeletal effects of two diphosphonates in dogs. Metab Bone Dis Relat Res 1980; 2: 389–407

    Google Scholar 

  39. Chan MM, Riggins RS, Rucker RB. Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dietary fluoride on biomechanical and biochemical changes in chick bone. J Nutr 1977; 107: 1747–54

    PubMed  CAS  Google Scholar 

  40. Lafage MH, Balena R, Battle MA, et al. Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. J Clin Invest 1995; 95: 2127–33

    PubMed  CAS  Google Scholar 

  41. Lauritzen DB, Balena R, Shea M, et al. Effects of combined prostaglandin and alendronate treatment on the histomorphometry and biomechanical properties of bone in ovariectomized rats. J Bone Miner Res 1993; 7: 871–9

    Google Scholar 

  42. Motoie H, Nakamura T, O’Uchi N, et al. Effects of the bisphosphonate YM175 on the bone mineral density, strength, structure and turnover in ovariectomized beagles on concomitant dietary calcium restriction. J Bone Miner Res 1995; 6: 910–20

    Google Scholar 

  43. Geusens P, Nijs J, Van der Perre G, et al. Longitudinal effect of tiludronate on bone mineral density, resonant frequency and strength in monkeys. J Bone Miner Res 1992; 6: 599–609

    Google Scholar 

  44. Ferretti JL, Cointry G, Capozza RF, et al. Biomechanical effects of the full range of useful doses of (3-amino-1-hydroxy-propylidene)-1,1-bisphosphonate (APD) on femur diaphyses and cortical bone tissue in rats. Bone Miner 1990; 11: 111–22

    PubMed  CAS  Google Scholar 

  45. Ferretti JL, Mondelo N, Capozza RF, et al. Effects of large doses of olpadronate (dimethyl-pamidronate) on mineral density, cross-sectional architecture, and mechanical properties of rat femurs. Bone 1995; 27: 285–93

    Google Scholar 

  46. Tarvainen R, Olkkonen H, Nevalainen T, et al. Effect of clodronate on fracture healing in denervated rats. Bone 1994; 15: 701–4

    PubMed  CAS  Google Scholar 

  47. Katsumata T, Nakamura T, Ohnishi H, et al. Intermittent cyclical etidronate treatment maintains the mass, structure and the mechanical property of bone in ovariectomized rats. J Bone Miner Res 1995; 6: 921–31

    Google Scholar 

  48. Hoekman K, Papapoulos SE, Peters ACB, et al. Characteristics and bisphosphonate treatment of a patient with juvenile osteoporosis. J Clin Endocrinol Metab 1985; 61: 952–6

    PubMed  CAS  Google Scholar 

  49. Adami S, Bhalla AK, Dorizzi R, et al. The acute-phase response after bisphosphonate administration. Calcif Tissue Int 1987; 41: 326–31

    PubMed  CAS  Google Scholar 

  50. Harink HIJ, Bijvoet OLM, Blanksma HJ, et al. Efficacious management with aminobisphosphonate (APD) in Paget’s disease of bone. Clin Orthop 1987; 217: 79–98

    Google Scholar 

  51. Bijvoet OLM, Frijlink WB, Jie K, et al. APD in Paget’s disease of bone: role of the mononuclear phagocyte system? Arthritis Rheum 1980; 23: 1193–204

    PubMed  CAS  Google Scholar 

  52. Schweitzer DH, Oostendorp-van der Ruit M, van de Pluijm G, et al. Interleukin-6 and the acute-phase response during treatment of patients with Paget’s disease with the nitrogen-containing bisphosphonate dimethylaminohydroxypropylidene bisphosphonate. J Bone Miner Res 1995; 6: 956–962

    Google Scholar 

  53. O’Doherty DP, Bickestaff DR, McCloskey EV, et al. Treatment of Paget’s disease of bone with aminohydroxybutylidene bisphosphonate. J Bone Miner Res 1990; 5: 480–91

    Google Scholar 

  54. Boonekamp PM, van der Wee-Pals LJA, van Wijk-van Lennep MML, et al. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner 1986; 1: 27–40

    PubMed  CAS  Google Scholar 

  55. Reitsma PH, Teitelbaum DL, Bijvoet OLM, et al. Differential action of bisphosphonates (3-amino-1-hydroxy-propylidene)-1,1-bisphosphonate (APD) and disodium dichloromethylidene bisphosphonate (C12MDP) on rat macrophage-mediated bone resorption in vitro. J Clin Invest 1982; 70: 927–33

    PubMed  CAS  Google Scholar 

  56. Cecchini MG, Fleisch H. Bisphosphonates in vitro specifically inhibits, among the hematopoietic series, the development of the mouse mononuclear phagocyte lineage. J Bone Miner Res 1990; 10: 1019–27

    Google Scholar 

  57. Labat ML, Florentini I, Davigny M, et al. Dichloromethylene disphosphonate (Cl2MDP) reduces natural killer (NK) cell activity in mice. Metab Bone Dis Relat Res 1984; 5: 281–7

    PubMed  CAS  Google Scholar 

  58. Labat ML, Tzehoval E, Moricard Y, et al. Lack of a T-cell dependent subpopulation of macrophages in (dichloromethylene) disphosphonate-treated mice. Biomed Pharm 1983; 37: 270–6

    CAS  Google Scholar 

  59. Menkin C, Shapiro IM. Osteoclasts, mononuclear phagocytes, and physiological bone resorption. Calcif Tissue Int 1986; 39: 357–9

    Google Scholar 

  60. Data on file, Procter & Gamble

  61. Mian M, Beghè F, Caprio A, et al. Tolerability and safety of clodronate therapy in bone diseases. Int J Clin Pharmacol Res 1991; 11: 107–14

    PubMed  CAS  Google Scholar 

  62. Borgström GH, Elomaa I, Blomqvist C, et al. Cytogenetic investigations of patients on clodronate therapy for Paget’s disease of bone. Bone 1987; 8 Suppl. 1: 85–6

    Google Scholar 

  63. Bounameaux HM, Sheifferli J, Montani JP, et al. Renal failure associated with intravenous diphosphonates. Lancet 1983; i: 471

    Google Scholar 

  64. Adami S, Bolzicco GP, Rizzo A, et al. The use of dichloromethylene bisphosphonate and aminobutane bisphosphonate in hypercalcaemia of malignancy. Bone Miner 1987; 2: 395–404

    PubMed  CAS  Google Scholar 

  65. Conte N, Di Virgilio R, Rolter I, et al. Hypercalcemia in malignancies: treatment with dichloromethylene diphosphonate (C12MDP). Tumori 1985; 71: 51–4

    PubMed  CAS  Google Scholar 

  66. Conte N, Di Virgilio R, Bettiol V. The use of dichloromethylene diphosphonate for the management of hypercalcemia of malignancies. Curr Ther Res 1986; 39: 421

    Google Scholar 

  67. Scharia SH, Minne HW, Sattar P, et al. Therapie der Tumorhypercalciamie mit Clodronat-einfluss auf Parathormon und Calcitriol. Deutsch Med Wochenschr 1987; 112: 1121–5

    Google Scholar 

  68. Kanis JA, Preston CJ, Yates AJP, et al. Effects of intravenous diphosphonates on renal function [letter]. Lancet 1983; i: 1328

    Google Scholar 

  69. Bonjour JP, Philippe J, Guelpa G, et al. Bone and renal components in hypercalcemia of malignancy and responses to a single infusion of clodronate. Bone 1988; 9: 123–30

    PubMed  CAS  Google Scholar 

  70. Ralston SH, Alzaid AA, Gallacher SJ, et al. Clinical experience with minohydroxypropylidene bisphosphonate (APD) in the management of cancer-associated hypercalcemia. Q J Med 1988; 258: 825–34

    Google Scholar 

  71. Canfield RE, Sins ES, Jacobs TP. Dichlorometylene diphosphonate action in hematologic and other malignancies: Bone 1987; Suppl.: 57–62

  72. Delmas PD, Charhon S, Chapuy MC, et al. Long-term effects of dichloromethylene diphosphonate (C12MDP) on skeletal lesions in multiple myeloma. Metab Bone Dis Relat Res 1982; 3: 163–8

    Google Scholar 

  73. Douglas DL, Kanis JA, Paterson AD, et al. Drug treatment of primary hyperparathyroidism: use of clodronate disodium. BMJ 1983; 286: 587–90

    PubMed  CAS  Google Scholar 

  74. Douglas DL, Duckworth T, Kanis JA, et al. Biochemical and clinical responses to dichloromethylene diphosphonate (C12MDP) in Paget’s disease of bone. Arthritis Rheum 1980; 23: 1185–92

    PubMed  CAS  Google Scholar 

  75. Dodwell DJ, Howell A, Ford J. Reduction in calcium excretion in women with breast cancer and bone metastasis using the oral biphosphonate pamidronate. Br J Cancer 1990; 61: 123–5

    PubMed  CAS  Google Scholar 

  76. Harink HIJ, Papapoulos SE, Blanskma HJ, et al. Paget’s disease of bone: early and late response to three different modes of treatment with aminohydroxypropylidene bisphosphonate (APD). BMJ 1987; 295: 1301–5

    Google Scholar 

  77. Tubiana-Hulin M, de Vernejoul MC, Brier M, et al. Traitement des hypercalcemies des metastases osteolytiques par l’amino-hydroxypropylidene-diphosphonate par voie orale. Presse Med 1984; 8: 483–6

    Google Scholar 

  78. Van Breukelen FJM, Bijvoet OLM, Frijlink WB, et al. Efficacy of amino-hydroxy-propylidene bisphosphonate in hypercalcemia: observations on regulation of serum calcium. Calcif Tissue Int 1982; 34: 321–7

    PubMed  Google Scholar 

  79. Lufkin EG, Argueta R, Whitaker MD, et al. Pamidronate: an unrecognized problem in gastrointestinal tolerability. Osteoporos Int 1994; 4: 320–2

    PubMed  CAS  Google Scholar 

  80. Maconi G, Bianchi Porro G. Multiple ulcerative esophagitis caused by alendronate. Am J Gastroenterol 1995; 90: 1889–90

    PubMed  CAS  Google Scholar 

  81. Adami S, Mian M, Gatti D, et al. Effects of two oral doses of alendronate in the treatment of Paget’s disease of bone. Bone 1994; 4: 415–7

    Google Scholar 

  82. Adami S, Passeri M, Ortolani S, et al. Effects of oral alendronate and intranasal salmon calcitonin on bone mass and biochemical markers of bone turnover in postmenopausal women with osteoporosis. Bone 1995; 17: 383–90

    PubMed  CAS  Google Scholar 

  83. Evans KT, Roberts GN. Where do all the tablets go? Lancet 1976; ii: 1237–9

    Google Scholar 

  84. Papapoulos SE, Harink HIJ, Bijvoet OLM, et al. Effects of decreasing serum calcium on circulating parathyroid hormone and vitamin D metabolites in normocalcemic and hypercalcemic patients treated with APD. Bone Miner 1986; 1: 69–78

    PubMed  CAS  Google Scholar 

  85. Adami S, Frijlink WB, Bijvoet OLM, et al. Regulation of calcium absorption by 1,25-dihydroxy-vitamin D. Studies of the effects of a bisphosphonate treatment. Cacif Tissue Int 1982; 34: 317–20

    CAS  Google Scholar 

  86. Pederson-Bjergaard O, Myhre J. Severe hypocalcaemia after treatment with disphosphonate and aminoglycoside. BMJ 1991; 302: 295

    Google Scholar 

  87. Mayordomo JI, Rivera F. Severe hypocalcemia after treatment with oral clodronate and aminoglycoside. Ann Oncol 1993; 4: 432–3

    PubMed  CAS  Google Scholar 

  88. Walton RJ, Russell RGG, Smith R. Changes in the renal and extrarenal handling of phosphate induced by disodium etidronate (EHDP) in man. Clin Sci Mol Med 1979; 49: 45–56

    Google Scholar 

  89. Gallacher SJ, Boyle IT, Capell HA. Pseudogout associated with the use of cyclical etidronate therapy. Scott Med J 1991; 36: 49

    PubMed  CAS  Google Scholar 

  90. Recker RR, Hassig GS, Lau JR, et al. The hyperphosphatemic effect of disodium ethane-1-hydroxy-l,1-disphosphonates (EHDP TM). Renal handling of phosphorus and the renal response to parathyroid hormone. J Lab Clin Med 1973; 81: 258–66

    PubMed  CAS  Google Scholar 

  91. Russel RGG, Smith R, Preston C, et al. Diphosphonates in Paget’s disease. Lancet 1974; i: 894–8

    Google Scholar 

  92. Challa A, Noorwali AA, Bevington A, et al. Cellular phosphate metabolism in patients receiving biphosphonate therapy. Bone 1986; 7: 255–9

    PubMed  CAS  Google Scholar 

  93. Vasikaran SD, O’Doherty DP, McCloskey EV, et al. The effect of alendronate on renal tubular reabsorption of phosphate. Bone Miner 1994; 27: 51–6

    PubMed  CAS  Google Scholar 

  94. Macarol V, Fraunfelder F. Pamidronate disodium and possible ocular adverse drug reactions. Am J Ophthalmol 1994; 118: 220–4

    PubMed  CAS  Google Scholar 

  95. Siris ES. Bisphosphonates and iritis. Lancet 1993; 341: 436

    PubMed  CAS  Google Scholar 

  96. Ghose K, Waterworth R, Trolove P, et al. Uveitis associated with pamidronate. Aust NZ J Med 1994; 24: 320

    CAS  Google Scholar 

  97. Reid IR, Mills DAJ, Wattie DJ. Ototoxicity associated with intravenous bisphosphonate administration. Calcif Tissue Int 1995; 56: 584–5

    PubMed  CAS  Google Scholar 

  98. Calligeros D, Douglas P, Abeygunasekera S, et al. Aseptic peritonitis in association with the use of pamidronate. Med J Aust 1993; 159: 144

    PubMed  CAS  Google Scholar 

  99. Foley-Nolan D, Daly MJ, Williams D, et al. Pamidronate associated hallucinations. Ann Rheum Dis 1992; 51: 927–8

    PubMed  CAS  Google Scholar 

  100. Schweitzer DH, Zwinderman AH, Vermeil P, et al. Improved treatment of Paget’s disease with dimethylaminohydroxy-propylidene bisphosphonate. J Bone Miner Res 1993; 2: 175–82

    Google Scholar 

  101. Ralston SH, Gardner MD, Drybury FJ, et al. Comparison of aminohydroxypropylidene bisphosphonate, mithramycin and corticosteroids/calcitonin in treatment of cancer associated hypercalcaemia. Lancet 1985; ii: 907–10

    Google Scholar 

  102. Pajus I, Lestang P, Liote F, et al. Erythroderma after clodronate treatment. BMJ 1993; 307: 84

    Google Scholar 

  103. Mautalen CA, Casco CA, Gonzalez D, et al. Side effects of disodium aminohydroxypropylidene-disphosphonate (APD) during treatment of bone diseases. BMJ 1984; 288: 828–9

    PubMed  CAS  Google Scholar 

  104. Elliot AT, Murray T, Mackie RM, et al. Severe reaction to diphosphonate: implications for treatment of Paget’s disease. BMJ 1988; 297: 592–3

    Google Scholar 

  105. Roux C, Listrat V, Villette B, et al. Long-lasting dermatological lesions after tiludronate therapy. Calcif Tissue Int 1992; 50: 378–80

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adami, S., Zamberlan, N. Adverse Effects of Bisphosphonates. Drug-Safety 14, 158–170 (1996). https://doi.org/10.2165/00002018-199614030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199614030-00003

Keywords

Navigation