Skip to main content
Log in

Effects of protein aggregates: An immunologic perspective

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The capacity of protein aggregates to enhance immune responses to the monomeric form of the protein has been known for over a half-century. Despite the clear connection between protein aggregates and antibody mediated adverse events in treatment with early therapeutic protein products such as intravenous immune globulin (IVIG) and human growth hormone, surprisingly little is known about the nature of the aggregate species responsible for such effects. This review focuses on a framework for understanding how aggregate species potentially interact with the immune system to enhance immune responses, garnered from basic immunologic research. Thus, protein antigens presented in a highly arrayed structure, such as might be found in large nondenatured aggregate species, are highly potent in inducing antibody responses even in the absence of T-cell help. Their potency may relate to the ability of multivalent protein species to extensively cross-link B-cell receptor, which (1) activates B cells via Bt kinases to proliferate, and (2) targets protein to class II major histocompatability complex (MHC)-loading compartments, efficiently eliciting T-cell help for antibody responses. The review further focuses on protein aggregates as they affect an immunogenicity risk assessment, the use of animal models and studies in uncovering effects of protein aggregates, and changes in product manufacture and packaging that may affect generation of protein aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dintzis R, Okajima M, Middleton M, Greene G, Dintzis H. The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence.J Immunol. 1989;143:1239–1244.

    CAS  PubMed  Google Scholar 

  2. Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms.Immunol Rev. 2000;176:154–170.

    Article  CAS  PubMed  Google Scholar 

  3. Bachmann M, Zinkernagel R. Neutralizing antiviral B-cell responses.Annu Rev Immunol. 1997;15:235–270.

    Article  CAS  PubMed  Google Scholar 

  4. Fluckiger AC, Li Z, Kato RM, et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation.EMBO J. 1998;17:1973–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ito H-O, Nakashima T, So T, Hirata M, Inoue M. Immunodominance of conformation-dependent B-cell epitopes of protein antigens.Biochem Biophys Res Commun. 2003;308:770–776.

    Article  CAS  PubMed  Google Scholar 

  6. Nath A, Hall E, Tuzova M, et al. Autoantibodies to Amyloid β-peptide (Aβ) are increased in Alzheimer’s disease patients and Aβ antibodies can enhance Aβ neurotoxicity.Neuromolecular Med. 2003;3:29–39.

    Article  CAS  PubMed  Google Scholar 

  7. O’Nuallain B, Wetzel R. Conformational Abs recognizing a generic amyloid fibril epitope.Proc Natl Acad Sci USA. 2002;99:1485–1490.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Casadevall N, Nataf J, Viron B, et al. Pure red cell aplasia and anti-erythropoietin antibodies in patients treated with recombinant erythropoietin.N Engl J Med. 2002;346:469–475.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Yang C, Xia Y, et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin.Blood. 2001;98:3241–3248.

    Article  CAS  PubMed  Google Scholar 

  10. Chackerian B, Lenz P, Lowy D, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus-like particles.J Immunol. 2002;169:6120–6126.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng P, Steele C, Gu L, Song W, Pierce S. MHC class II antigen processing in B cells: accelerated intracellular targeting of antigens.J Immunol. 1999;162:7171–7180.

    CAS  PubMed  Google Scholar 

  12. Frei P, Benacerraf B, Thorbecke GJ. Phagocytosis of the antigen, a crucial step in the induction of the primary response.Proc Natl Acad Sci USA. 1965;53:20–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin F, Oliver A, Kearney J. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens.Immunity. 2001;14:617–629.

    Article  CAS  PubMed  Google Scholar 

  14. Weigle WO. Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis.Adv Immunol. 1980;30:159–273.

    Article  CAS  PubMed  Google Scholar 

  15. Goodnow CC. Transgenic mice and analysis of B-cell tolerance.Annu Rev Immunol. 1992;10:489–518.

    Article  CAS  PubMed  Google Scholar 

  16. Kyewski B, Derbinski J. Self-representation in the thymus: an extended view.Nat Rev Immunol. 2004;4:688–698.

    Article  CAS  PubMed  Google Scholar 

  17. Aalberse R, Platts-Mills T. How do we avoid developing allergy: modifications of the Th2 response from a B-cell perspective.J Allergy Clin Immunol. 2004;113:983–986.

    Article  CAS  PubMed  Google Scholar 

  18. Spiegelberg H, Horner A, Takabayashi K, Raz E. Allergen immunostimulatory oligodeoxynucleotide conjugate: a novel allergoid for immunotherapy.Curr Opin Allergy Clin Immunol. 2002;2:547–551.

    Article  PubMed  Google Scholar 

  19. Cleland J, Powell M, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation.Crit Rev Ther Drug Carrier Syst. 1993;10:307–377.

    CAS  PubMed  Google Scholar 

  20. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals.Int J Pharm. 1999;185:129–188.

    Article  CAS  PubMed  Google Scholar 

  21. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulationsJ Pharm Sci. 2004;93:1390–1402.

    Article  CAS  PubMed  Google Scholar 

  22. Hermeling S, Schellekens H, Crommelin DJ, Jiskoot W. Micelle-associated protein in epoetin formulations: a risk factor for immunogenicity?Pharm Res. 2003;20:1903–1907.

    Article  CAS  PubMed  Google Scholar 

  23. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long term efficacy of infliximab in Crohn’s disease.N Engl J Med. 2003;348:601–608.

    Article  CAS  PubMed  Google Scholar 

  24. Ring J, Stephan W, Brendel W. Anaphylactoid reactions to infusions of plasma protein and human serum albumin.Clin Allergy. 1979;9:89–97.

    Article  CAS  PubMed  Google Scholar 

  25. Dresser DW. Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen.Immunology. 1962;5:378–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gamble CN. The role of soluble aggregates in the primary immune response of mice to human gamma globulin.Int Arch Allergy Appl Immunol. 1966;30:446–455.

    Article  CAS  PubMed  Google Scholar 

  27. Getahun A, Heyman B. How antibodies act as natural adjuvants.Immunol Lett. 2006;104:38–45.

    Article  CAS  PubMed  Google Scholar 

  28. Braun A, Kwee L, Labow MA, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-alpha) in normal and transgenic mice.Pharm Res. 1997;14:1472–1478.

    Article  CAS  PubMed  Google Scholar 

  29. Barandun S, Kistler P, Jeunet F, Isliker H. Intravenous administration of human γ-globulin.Vox Sang. 1962;7:157–174.

    Article  CAS  PubMed  Google Scholar 

  30. Ellis E, Henney C. Adverse reactions following administration of human gamma globulin.J Allergy. 1969;43:45–54.

    Article  CAS  PubMed  Google Scholar 

  31. Moore W, Leppert P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH.J Clin Endocrinol Metab. 1980;51:691–697.

    Article  CAS  PubMed  Google Scholar 

  32. Staff PDR, ed. Proleukin. In:2004 Physicians Desk Reference. 58th ed. Montvale, NJ: Thomson Health care; 2004;1163–1167.

    Google Scholar 

  33. Prummer O. Treatment-induced antibodies to interleukin 2.Biotherapy. 1997;10:15–24.

    Article  CAS  PubMed  Google Scholar 

  34. Ishiguro A, Nakahata T, Matsubara K, et al. Age-related changes in thrombopoietin in children: reference interval for serum thrombopoietin levels.Br J Haematol. 1999;106:884–888.

    Article  CAS  PubMed  Google Scholar 

  35. Novotny J, Handschumacher M, Haber E, et al. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains).Proc Natl Acad Sci USA. 1986;83:226–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li P, Azizul H, Blum J. Role of disulfide bonds in regulating antigen processing and epitope selection.J Immunol. 2002;169:2444–2450.

    Article  CAS  PubMed  Google Scholar 

  37. Alliance Protein Laboratories Web site. Summary of characterization methods offered. Available at: http://www.ap-lab.com/characterization_methods.htm. Accessed July 6, 2006.

  38. Liu J, Shire SJ. Analytical ultracentrifugation in the pharmaceutical industry.J Pharm Sci. 1999;88:1237–1241.

    Article  CAS  PubMed  Google Scholar 

  39. Wyatt Technology corporation Web site. Theory. Available at: http://www.wyatt.com/theory/index.cfin. Accessed July 6, 2006.

  40. Koppaka V, Murray P, Axelsen P. Early synergy between Abeta 42 and oxidatively damaged membranes in promoting amyloid fibril formation by Abeta40.J Biol Chem. 2003;278:36277–36284.

    Article  CAS  PubMed  Google Scholar 

  41. Levin S. Field flow fractionation in biomedical analysis.Biomed Chromatogr. 1991;5:133–137.

    Article  CAS  PubMed  Google Scholar 

  42. Fraunhofer W, Winter G, Coester C. Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems.Anal Chem. 2004;76:1909–1920.

    Article  CAS  PubMed  Google Scholar 

  43. Boven K, Stryker S, Knight J, et al. The increased incidence of pure red cell aplasia with an Eprex formulation in uncoated rubber stopper syringes.Kidney Int. 2005;67:2346–2353.

    Article  PubMed  Google Scholar 

  44. Peerlinck K, Arnout J, Di Giambattista M, et al. Factor VIII inhibitors in previously treated hemophilia A patients with a double virus inactivated plasma derived factor VIII concentrate.Thromb Haemost. 1997;77:80–86.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy S. Rosenberg.

Additional information

Published: August 4, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, A.S. Effects of protein aggregates: An immunologic perspective. AAPS J 8, 59 (2006). https://doi.org/10.1208/aapsj080359

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080359

Keywords

Navigation