Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The pathogenesis of rheumatoid arthritis: new insights from old clinical data?

Abstract

Despite their different targets, biologic agents used for blockade of TNF and IL-6, inhibition of T-cell co-stimulation and B-cell depletion all have similar beneficial effects on the outcome of rheumatoid arthritis (RA). This observation raises questions as to whether the targets of these therapies might all be involved in a common pathogenetic pathway. However, blockade of TNF and IL-6 has a similar inhibitory effect on joint damage progression in patients with either early or late disease. In comparison, B-cell depletion and inhibition of T-cell co-stimulation seem to have a somewhat delayed effect on joint damage (compared with cytokine inhibition), which suggests that these approaches affect upstream pathogenetic events. This article discusses these disparities and presents hypotheses as to whether clinical trial data can be used to determine at which point a biologic agent might interfere with the pathogenetic cascade in RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenesis of RA.
Figure 2: The effects of TNF and IL-6 inhibition.
Figure 3: Effects of B-cell depletion on the pathogenesis of RA.
Figure 4: Effects of inhibiting T-cell co-stimulation on the pathogenesis of RA.
Figure 5: Changes in radiographic scores for RA after different biologic therapies.

Similar content being viewed by others

References

  1. Feldmann, M., Brennan, F. M., Foxwell, B. M. & Maini, R. N. The role of TNF-α and IL-1 in rheumatoid arthritis. Curr. Dir. Autoimmun. 3, 188–199 (2001).

    Article  CAS  Google Scholar 

  2. Partsch, G. et al. Highly increased levels of tumor necrosis factor-α and other proinflammatory cytokines in psoriatic arthritis synovial fluid. J. Rheumatol. 24, 518–523 (1997).

    CAS  Google Scholar 

  3. Firestein, G. S., Alvaro-Gracia, J. M. & Maki, R. Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J. Immunol. 144, 3347–3353 (1990).

    CAS  PubMed  Google Scholar 

  4. Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol. 22, 347–352 (2010).

    Article  CAS  Google Scholar 

  5. Smolen, J. S. & Steiner, G. Rheumatoid arthritis is more than cytokines: autoimmunity and rheumatoid arthritis. Arthritis Rheum. 44, 2218–2220 (2001).

    Article  CAS  Google Scholar 

  6. Buch, M. H. et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 70, 909–920 (2011).

    Article  CAS  Google Scholar 

  7. Westhovens, R. et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann. Rheum. Dis. 68, 1870–1877 (2009).

    Article  CAS  Google Scholar 

  8. Dinarello, C. A. Interleukin-1 and interleukin-1 antagonism. Blood 77, 1627–1652 (1991).

    CAS  PubMed  Google Scholar 

  9. van Den Berg, W. B. Lessons from animal models of arthritis over the past decade. Arthritis Res. Ther. 11, 250 (2009).

    Article  Google Scholar 

  10. Cohen, S. B. The use of anakinra, an interleukin-1 receptor antagonist, in the treatment of rheumatoid arthritis. Rheum. Dis. Clin. North Am. 30, 365–380 (2004).

    Article  Google Scholar 

  11. Cardiel, M. H. et al. A phase 2 randomized, double-blind study of AMG 108, a fully human monoclonal antibody to IL-1R, in patients with rheumatoid arthritis. Arthritis Res. Ther. 12, R192 (2010).

    Article  Google Scholar 

  12. Smolen, J. S. et al. The need for prognosticators in rheumatoid arthritis. Biological and clinical markers: where are we now? Arthritis Res. Ther. 10, 208 (2008).

    Article  Google Scholar 

  13. van der Lubbe, P. A., Dijkmans, B. A., Markusse, H. M., Nässander, U. & Breedveld, F. C. A randomized, double-blind, placebo-controlled study of CD4 monoclonal antibody therapy in early rheumatoid arthritis. Arthritis Rheum. 38, 1097–1106 (1995).

    Article  CAS  Google Scholar 

  14. van Vollenhoven, R. F., Kinnman, N., Vincent, E., Wax, S. & Bathon, J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 63, 1782–1792 (2011).

    Article  CAS  Google Scholar 

  15. Human Genome Sciences. Human genome sciences reports phase 2 results for lymphostat-b (belimumab) in patients with rheumatoid arthritis [online], (2005).

  16. Keystone, E. Treatments no longer in development for rheumatoid arthritis. Ann. Rheum. Dis. 61 (Suppl. 2) ii43–ii45 (2002).

    Article  Google Scholar 

  17. Genovese, M. C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).

    Article  CAS  Google Scholar 

  18. Weinblatt, M. et al. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomized, placebo-controlled study. Arthritis Rheum. 54, 2807–2816 (2006).

    Article  CAS  Google Scholar 

  19. Kleinau, S., Martinsson, P. & Heyman, B. Induction and suppression of collagen-induced arthritis is dependent on distinct fcγ receptors. J. Exp. Med. 191, 1611–1616 (2000).

    Article  CAS  Google Scholar 

  20. Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J. Exp. Med. 187, 461–468 (1998).

    Article  CAS  Google Scholar 

  21. Gouze, E. et al. Gene therapy for rheumatoid arthritis. Expert Opin. Biol. Ther. 1, 971–978 (2001).

    Article  CAS  Google Scholar 

  22. Blüml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).

    Article  Google Scholar 

  23. Smolen, J. S., Aletaha, D., Koeller, M., Weisman, M. H. & Emery, P. New therapies for the treatment of rheumatoid arthritis. Lancet 370, 1861–1874 (2007).

    Article  CAS  Google Scholar 

  24. Hamel, K. et al. Suppression of proteoglycan-induced arthritis by anti-CD20 B cell depletion therapy is mediated by reduction in autoantibodies and CD4+ T cell reactivity. J. Immunol. 180, 4994–5003 (2008).

    Article  CAS  Google Scholar 

  25. Raza, K. et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res. Ther. 7, R784–R795 (2005).

    Article  CAS  Google Scholar 

  26. Chen, X. & Oppenheim, J. J. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Lett. 585, 3611–3618 (2011).

    Article  CAS  Google Scholar 

  27. Yoshida, H., Hashizume, M., Suzuki, M. & Mihara, M. Anti-IL-6 receptor antibody suppressed T cell activation by inhibiting IL-2 production and inducing regulatory T cells. Eur. J. Pharmacol. 634, 178–183 (2010).

    Article  CAS  Google Scholar 

  28. Dörner, T., Radbruch, A. & Burmester, G. R. B-cell-directed therapies for autoimmune disease. Nature Rev. Rheumatol. 5, 433–441 (2009).

    Article  Google Scholar 

  29. Hamel, K. M. et al. B cell depletion enhances T regulatory cell activity essential in the suppression of arthritis. J. Immunol. 187, 4900–4906 (2011).

    Article  CAS  Google Scholar 

  30. Sun, M. & Fink, P. J. A new class of reverse signaling costimulators belongs to the TNF family. J. Immunol. 179, 4307–4312 (2007).

    Article  CAS  Google Scholar 

  31. Axmann, R. et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis. 67, 1603–1609 (2008).

    Article  CAS  Google Scholar 

  32. Álvarez-Quiroga, C. et al. CTLA-4-Ig therapy diminishes the frequency but enhances the function of TREG cells in patients with rheumatoid arthritis. J. Clin. Immunol. 31, 588–595 (2011).

    Article  Google Scholar 

  33. Emery, P. et al. Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet 372, 375–382 (2008).

    Article  CAS  Google Scholar 

  34. Keystone, E. et al. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 58, 3319–3329 (2008).

    Article  CAS  Google Scholar 

  35. Emery, P. et al. The effects of golimumab on radiographic progression in rheumatoid arthritis: results of randomized controlled studies of golimumab before methotrexate therapy and golimumab after methotrexate therapy. Arthritis Rheum. 63, 1200–1210 (2011).

    Article  CAS  Google Scholar 

  36. Smolen, J. S. et al. Evidence of radiographic benefit of infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of the ATTRACT trial. Arthritis Rheum. 52, 1020–1030 (2005).

    Article  CAS  Google Scholar 

  37. Kremer, J. M. et al. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum. 63, 609–621 (2011).

    Article  CAS  Google Scholar 

  38. Smolen, J. S., Martinez-Avila, J. C. & Aletaha, D. Tocilizumab inhibits progression of joint damage in rheumatoid arthritis irrespective of its antiinflammatory effects: disassociation of the link between inflammation and destruction. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2011-200395.

  39. Tak, P. P. et al. Inhibition of joint damage and improved clinical outcomes with rituximab plus methotrexate in early active rheumatoid arthritis: the IMAGE trial. Ann. Rheum. Dis. 70, 39–46 (2011).

    Article  CAS  Google Scholar 

  40. Aletaha, D., Alasti, F. & Smolen, J. S. Rheumatoid arthritis near remission: clinical rather than laboratory inflammation is associated with radiographic progression. Ann. Rheum. Dis. 70, 1975–1980 (2011).

    Article  Google Scholar 

  41. Smolen, J. S., Aletaha, D., Grisar, J. C., Stamm, T. A. & Sharp, J. T. Estimation of a numerical value for joint damage-related physical disability in rheumatoid arthritis clinical trials. Ann. Rheum. Dis. 69, 1058–1064 (2010).

    Article  Google Scholar 

  42. Dawes, P. T. et al. Rheumatoid arthritis: treatment which controls the C-reactive protein and erythrocyte sedimentation rate reduces radiological progression. Br. J. Rheumatol. 25, 44–49 (1986).

    Article  CAS  Google Scholar 

  43. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  Google Scholar 

  44. Takagi, N. et al. Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum. 41, 2117–2121 (1998).

    Article  CAS  Google Scholar 

  45. Williams, R. O., Feldmann, M. & Maini, R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl Acad. Sci. USA 89, 9784–9788 (1992).

    Article  CAS  Google Scholar 

  46. Yanaba, K. et al. B cell depletion delays collagen-induced arthritis in mice: arthritis induction requires synergy between humoral and cell-mediated immunity. J. Immunol. 179, 1369–1380 (2007).

    Article  CAS  Google Scholar 

  47. Knoerzer, D. B., Karr, R. W., Schwartz, B. D. & Mengle–Gaw, L. J. Collagen-induced arthritis in the BB rat. Prevention of disease by treatment with CTLA-4-Ig. J. Clin. Invest. 96, 987–993 (1995).

    Article  CAS  Google Scholar 

  48. Iwai, H. et al. Amelioration of collagen-induced arthritis by blockade of inducible costimulator-B7 homologous protein costimulation. J. Immunol. 169, 4332–4339 (2002).

    Article  CAS  Google Scholar 

  49. St. Clair, E. W. et al. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum. 50, 3432–3443 (2004).

    Article  CAS  Google Scholar 

  50. Breedveld, F. C. et al. The PREMIER study: a multicenter, randomized, double-blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum. 54, 26–37 (2006).

    Article  CAS  Google Scholar 

  51. Keystone, E. C. et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 50, 1400–1411 (2004).

    Article  CAS  Google Scholar 

  52. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2739–2806 (2006).

    Google Scholar 

  53. Keystone, E. et al. Rituximab inhibits structural joint damage in patients with rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitor therapies. Ann. Rheum. Dis. 68, 216–221 (2009).

    Article  CAS  Google Scholar 

  54. Lipsky, P. E. et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N. Engl. J. Med. 343, 1594–1602 (2000).

    Article  CAS  Google Scholar 

  55. Klareskog, L. et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 363, 675–681 (2004).

    Article  CAS  Google Scholar 

  56. Kremer, J. M. et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 144, 865–876 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported in part through Coordination Theme 1 (Health) of the European Community's FP7; Grant Agreement number HEALTH-F2-2008-223404 (Masterswitch). This is a publication of the Joint and Bone Center for Diagnosis, Research and Therapy of Musculoskeletal Disorders of the Medical University of Vienna, Austria.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for, and wrote, the manuscript as well as providing substantial contributions to discussions of the content and editing the article before submission.

Corresponding author

Correspondence to Josef S. Smolen.

Ethics declarations

Competing interests

J. S. Smolen declares that he has acted as a speaker or consultant, and received research funding from Abbott, Amgen, Bristol-Myers Squibb, Janssen Biotech, MSD, Pfizer, Roche and UCB. D. Aletaha declares that he has acted as a speaker or consultant for Abbott, Bristol-Myers Squibb, MSD, Pfizer, Roche and UCB. K. Redlich declares that he has acted as a speaker or consultant for Abbott, MSD, Pfizer and Roche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolen, J., Aletaha, D. & Redlich, K. The pathogenesis of rheumatoid arthritis: new insights from old clinical data?. Nat Rev Rheumatol 8, 235–243 (2012). https://doi.org/10.1038/nrrheum.2012.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.23

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing