Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macro view of microRNA function in osteoarthritis

Abstract

Osteoarthritis (OA), the most common musculoskeletal disorder, is complex, multifaceted, and characterized by degradation of articular cartilage and alterations in other joint tissues. Although some pathogenic pathways have been characterized, current knowledge is incomplete and effective approaches to the prevention or treatment of OA are lacking. Understanding novel molecular mechanisms that are involved in the maintenance and destruction of articular cartilage, including extracellular regulators and intracellular signalling mechanisms in joint cells that control cartilage homeostasis, has the potential to identify new therapeutic targets in OA. MicroRNAs control tissue development and homeostasis by fine-tuning gene expression, with expression patterns specific to tissues and developmental stages, and are increasingly implicated in the pathogenesis of complex diseases such as cancer and cardiovascular disorders. The emergent roles of microRNAs in cartilage homeostasis and OA pathogenesis are summarized in this Review, alongside potential clinical applications.

Key Points

  • Although some pathogenic pathways in osteoarthritis (OA) have been characterized, effective approaches to prevention or treatment of OA are lacking

  • Novel genetic regulators, microRNAs (miRNAs), are involved in the development of the musculoskeletal system and OA pathogenesis through maintenance of articular chondrocytes

  • miRNAs have a role in transmitting the effects of the main risk factors for OA, such as ageing and inflammation, onto cellular homeostasis through their control of multiple target genes

  • Approaches to maintaining or suppressing the expression of key miRNAs in OA pathogenesis have the potential to identify new therapeutic and diagnostic targets

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OA pathogenesis and the putative role of miRNA.
Figure 2: Molecular machinery behind the biological functions of miRNA.
Figure 3: Dual roles of miR-140 in endochondral bone development and articular cartilage homeostasis.
Figure 4: Co-administration of miRNA mimics have potential for synergistic functions in maintaining or, perhaps, restoring joint health.

Similar content being viewed by others

References

  1. Helmick, C. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 58, 15–25 (2008).

    Article  PubMed  Google Scholar 

  2. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lotz, M. K. & Kraus, V. B. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res. Ther. 12, 211 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hashimoto, M., Nakasa, T., Hikata, T. & Asahara, H. Molecular network of cartilage homeostasis and osteoarthritis. Med. Res. Rev. 28, 464–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Goldring, M. B. & Marcu, K. B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 11, 224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lotz, M. K. & Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat. Rev. Rheumatol. 7, 579–587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S. & Lodish, H. F. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl Acad. Sci. USA 103, 8721–8726 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380–385 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA 102, 10898–10903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi, T. et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl Acad. Sci. USA 105, 1949–1954 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mizoguchi, F. et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J. Cell. Biochem. 109, 866–875 (2010).

    CAS  PubMed  Google Scholar 

  25. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, C. Y., Choi, Y. S. & McManus, M. T. Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 19, R169–R175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Eberhart, J. K. et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat. Genet. 40, 290–298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuddenham, L. et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Miyaki, S. et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60, 2723–2730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamashita, S. et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J. Biol. Chem. 287, 22206–22215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, L., Shen, Q., Zhang, C., Chen, L., & Yu, C. Assessment of the profiling microRNA expression of differentiated and dedifferentiated human adult articular chondrocytes. J. Orthop. Res. 29, 1578–1584 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Miyaki, S. et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24, 1173–1185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakamura, Y., Inloes, J. B., Katagiri, T. & Kobayashi, T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol. Cell Biol. 31, 3019–3028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, J. et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 585, 2992–2997 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Nicolas, F. E. et al. mRNA expression profiling reveals conserved and non-conserved miR-140 targets. RNA Biol. 8, 607–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura, Y. et al. Sox9 is upstream of microRNA-140 in cartilage. Appl. Biochem. Biotechnol. 166, 64–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Dudek, K. A., Lafont, J. E., Martinez-Sanchez, A. & Murphy, C. L. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J. Biol. Chem. 285, 24381–24387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Swingler, T. E. et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 64, 1909–1919 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Sanchez, A., Dudek, K. A., & Murphy, C. L. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J. Biol. Chem. 287, 916–924 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Xin, M. et al. MicroRNA miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 23, 2166–2178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iliopoulos, D., Malizos, K. N., Oikonomou, P. & Tsezou, A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3, e3740 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones, S. W. et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13. Osteoarthritis Cartilage 17, 464–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Tardif, G., Hum, D., Pelletier, J. P., Duval, N. & Martel-Pelletier, J. Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 10, 148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, L. H., Chiou, G. Y., Chen, Y. W., Li, H. Y. & Chiou, S. H. MicroRNA and aging: a novel modulator in regulating the aging network. Ageing Res. Rev. 9 (Suppl. 1), 59–66 (2010).

    Article  CAS  Google Scholar 

  48. Liang, R., Bates, D. J. & Wang, E. Epigenetic control of microRNA expression and aging. Curr. Genomics 10, 184–193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gagarina, V. et al. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum. 62, 1383–1392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong, E. H. et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J. Biol. Chem. 285, 1283–1295 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Takayama, K. et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 60, 2731–2740 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Fujita, N. et al. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J. Orthop. Res. 29, 511–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Dvir-Ginzberg, M., Gagarina, V., Lee, E. J. & Hall, D. J. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J. Biol. Chem. 283, 36300–36310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saunders, L. R. et al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2, 415–431 (2010).

    Article  CAS  Google Scholar 

  55. Schonrock, N., Humphreys, D. T., Preiss, T. & Götz, J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J. Mol. Neurosci. 46, 324–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, D. et al. miR-22 represses cancer progression by inducing cellular senescence. J. Cell. Biol. 193, 409–424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jazbutyte, V. et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr.) (in press).

  58. Abouheif, M. M. et al. Silencing microRNA-34a inhibits chondrocytes apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford) 49, 2054–2060 (2010).

    Article  CAS  Google Scholar 

  59. Dunn, W., DuRaine, G. & Reddi, A. H. Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum. 60, 2333–2339 (2009).

    Article  PubMed  Google Scholar 

  60. Ceribelli, A., Nahid, M. A., Satoh, M. & Chan, E. K. MicroRNAs in rheumatoid arthritis. FEBS Lett. 585, 3667–3674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).

    Article  PubMed  Google Scholar 

  62. Nakasa, T. et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58, 1284–1292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamasaki, K. et al. Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60, 1035–1041 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Akhtar, N. et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62, 1361–1371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, X. et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene 480, 34–41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suri, S. & Walsh, D. A. Osteochondral alterations in osteoarthritis. Bone 51, 204–211 (2012).

    Article  PubMed  Google Scholar 

  67. Pauley, K. M. et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10, R101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Okuhara, A. et al. Change in microRNA expression in peripheral mononuclear cells according to the progression of osteoarthritis. Mod. Rheumatol. 22, 446–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Nakasa, T., Shibuya, H., Nagata, Y., Niimoto, T. & Ochi, M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 63, 1582–1590 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Sugatani, T. & Hruska, K. A. MicroRNA-223 is a key factor in osteoclast differentiation. J. Cell Biochem. 101, 996–999 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Sugatani, T. & Hruska, K. A. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J. Biol. Chem. 284, 4667–4678 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mizuno, Y. et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 583, 2263–2268 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Fasanaro, P. et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283, 15878–15883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, H. et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119, 3666–3677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, R. et al. A Runx/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J. Biol. Chem. 286, 12328–12339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072–1076 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Saito, T. et al. Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat. Med. 16, 678–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, S. et al. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 16, 687–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Otsuki, S. et al. Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc. Natl Acad. Sci. USA 107, 10202–10207 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Taniguchi, N. et al. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc. Natl Acad. Sci. USA 106, 1181–1186 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hellio Le Graverand-Gastineau, M. P. OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthritis Cartilage 17, 1393–1401 (2009).

    Article  PubMed  Google Scholar 

  84. Thirunavukkarasu, K., Pei, Y. & Wei, T. Characterization of the human ADAMTS-5 (aggrecanase-2) gene promoter. Mol. Biol. Rep. 34, 225–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, A. C. et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med. 15, 1421–1425 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Saito, T. & Kawaguchi, H. HIF-2α as a possible therapeutic target of osteoarthritis. Osteoarthritis Cartilage 18, 1552–1556 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Alcaraz, M. J., Megías, J., García-Arnandis, I., Clérigues V & Guillén, M. I. New molecular targets for the treatment of osteoarthritis. Biochem. Pharmacol. 80, 13–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Eguchi, A. et al. Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat. Biotechnol. 27, 567–571 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nagata, Y. et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded microRNA-15a. Arthritis Rheum. 60, 2677–2683 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kosaka, N., Iguchi, H. & Ochiya, T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101, 2087–2092 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Wittmann, J. & Jäck, H. M. Serum microRNAs as powerful cancer biomarkers. Biochim. Biophys. Acta 1806, 200–207 (2010).

    CAS  PubMed  Google Scholar 

  93. Murata, K. et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 12, R86 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kosaka, N., Izumi, H., Sekine, K. & Ochiya, T. MicroRNA as a new immune-regulatory agent in breast milk. Silence 1, 7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the NIH (USA; grant numbers AR050631 and AR056120), the Arthritis National Research Foundation (USA), Health and Labour Sciences Research Grants (Ministry of Health, Labour and Welfare, Japan), Grants-in-Aid for Scientific Research (Ministry of Education, Culture, Sports, Science and Technology, Japan), the National Center for Child Health and Development (Japan; 20A-3) and CREST (Japan Science and Technology Agency).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussing its content, writing and review/editing of the manuscript before publication.

Corresponding author

Correspondence to Hiroshi Asahara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyaki, S., Asahara, H. Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol 8, 543–552 (2012). https://doi.org/10.1038/nrrheum.2012.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing