Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The balance of tissue repair and remodeling in chronic arthritis

Abstract

The introduction of targeted therapies has dramatically changed the prognosis of patients with chronic joint diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). As control of inflammation, and hence of symptoms of disease, is increasingly achieved, more attention is given towards the long-term consequences of these disorders, to the structural damage in the skeletal tissues and to the resulting disability. In AS, bone remodeling with new cartilage and bone formation leading to ankylosis is a striking feature. Clinically successful TNF antagonists do not inhibit radiographic progression of disease. New insights into the molecules involved in ankylosis (such as bone morphogenetic proteins and Wnts) have suggested that the classical paradigm linking inflammation and ankylosis can be challenged, and new concepts of disease onset and progression, with a focus on cell stress and damage, are rapidly evolving. In RA, inhibition of Wnt signaling and defective osteoblast function have been associated with lack of repair. As restoration of tissue integrity and homeostasis is the ultimate goal of therapy, these findings suggest new roads for therapeutic intervention. For patients with AS or RA, such strategies will be critically dependent on further research that defines individual risk factors and need for interventions.

Key Points

  • Ankylosing spondylitis (AS) is characterized by extensive cartilage and bone formation, which leads to ankylosis in the sacroiliac joints and the spine

  • Ankylosis and ongoing inflammation both contribute to reduced mobility and increased disability in patients with AS

  • Radiographic progression of disease in AS (characterized by ankylosis) varies greatly between patients

  • In rheumatoid arthritis (RA), suppression of osteoblast activity interferes with healing of erosions; why this inhibition persists even after clinical control of the disease has been achieved is unclear

  • The osteoimmunology research agenda in AS and RA is rapidly evolving, providing new insights into disease onset and the reason why symptoms manifest in the joint or spine

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical outcome of chronic arthritis.
Figure 2: New bone formation in AS.
Figure 3: Damage and lack of repair in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  Google Scholar 

  2. Braun, J. & Sieper, J. Ankylosing spondylitis. Lancet 369, 1379–1390 (2007).

    Article  Google Scholar 

  3. Mease, P. J. Psoriatic arthritis: update on pathophysiology, assessment and management. Ann. Rheum. Dis. 70 (Suppl. 1), i77–i84 (2011).

    Article  Google Scholar 

  4. McInnes, I. B. & O'Dell, J. R. State-of-the-art: rheumatoid arthritis. Ann. Rheum. Dis. 69, 1898–1906 (2010).

    Article  CAS  Google Scholar 

  5. Brandt, H. C., Spiller, I., Song, I.-H., Vahldiek, J. L., Rudwaleit, M. & Sieper, J. Performance of referral recommendations in patients with chronic back pain and suspected axial spondyloarthritis. Ann. Rheum. Dis. 66, 1479–1484 (2007).

    Article  Google Scholar 

  6. Luyten, F. P., Lories, R. J. U., Verschueren, P., de Vlam, K. & Westhovens, R. Contemporary concepts of inflammation, damage and repair in rheumatic diseases. Best Pract. Res. Clin. Rheumatol. 20, 829–848 (2006).

    Article  CAS  Google Scholar 

  7. Schett, G. Joint remodelling in inflammatory disease. Ann. Rheum. Dis. 66 (Suppl. 3), iii42–iii44 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lories, R. J. U., Luyten, F. P. & de Vlam, K. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res. Ther. 11, 221 (2009).

    Article  Google Scholar 

  9. El-Maghraoui, A. Osteoporosis and ankylosing spondylitis. Joint Bone Spine 71, 291–295 (2004).

    Article  Google Scholar 

  10. Carter, S. Lories, R. J. Osteoporosis: a paradox in ankylosing spondylitis. Current Osteoporos. Rep. 9, 112–115 (2011).

    Article  Google Scholar 

  11. Lories, R. J. U., de Vlam, K. & Luyten, F. P. Are current available therapies disease-modifying in spondyloarthritis?. Best. Pract. Res. Clin. Rheumatol. 24, 625–635 (2010).

    Article  Google Scholar 

  12. Machado, P. et al. Both structural damage and inflammation of the spine contribute to impairment of spinal mobility in patients with ankylosing spondylitis. Ann. Rheum. Dis. 69, 1465–1470 (2010).

    Article  Google Scholar 

  13. Vander Cruyssen, B. et al. Hip involvement in ankylosing spondylitis: epidemiology and risk factors associated with hip replacement surgery. Rheumatology (Oxford) 49, 73–81 (2010).

    Article  Google Scholar 

  14. Vandooren, B. et al. Mediators of structural remodeling in peripheral spondylarthritis. Arthritis Rheum. 60, 3534–3545 (2009).

    Article  CAS  Google Scholar 

  15. Cross, M. J., Smith, E. U. R., Zochling, J. & March, L. M. Differences and similarities between ankylosing spondylitis and rheumatoid arthritis: epidemiology. Clin. Exp. Rheumatol. 27, S36–S42 (2009).

    CAS  PubMed  Google Scholar 

  16. Boonen, A. & Mau, W. The economic burden of disease: comparison between rheumatoid arthritis and ankylosing spondylitis. Clin. Exp. Rheumatol. 27, S112–S117 (2009).

    CAS  PubMed  Google Scholar 

  17. Sieper, J., Appel, H., Braun, J. & Rudwaleit, M. Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum. 58, 649–656 (2008).

    Article  Google Scholar 

  18. Lories, R. J. U., Derese, I. & Luyten, F. P. Inhibition of osteoclasts does not prevent joint ankylosis in a mouse model of spondyloarthritis. Rheumatology (Oxford) 47, 605–608 (2008).

    Article  CAS  Google Scholar 

  19. Schett, G. et al. Tumor necrosis factor α and RANKL blockade cannot halt bony spur formation in experimental inflammatory arthritis. Arthritis Rheum. 60, 2644–2654 (2009).

    Article  CAS  Google Scholar 

  20. Maksymowych, W. P. Disease modification in ankylosing spondylitis. Nat. Rev. Rheumatol. 6, 75–81 (2010).

    Article  Google Scholar 

  21. Appel, H. et al. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum. 54, 1805–1813 (2006).

    Article  Google Scholar 

  22. Appel, H. et al. Immunohistochemical analysis of osteoblasts in zygapophyseal joints of patients with ankylosing spondylitis reveal repair mechanisms similar to osteoarthritis. J. Rheumatol. 37, 823–828 (2010).

    Article  CAS  Google Scholar 

  23. Bywaters, E. G. The early lesions of ankylosing spondylitis. Ann. Rheum. Dis. 28, 330 (1969).

    Article  CAS  Google Scholar 

  24. François, R. J., Gardner, D. L., Degrave, E. J. & Bywaters, E. G. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum. 43, 2011–2024 (2000).

    Article  Google Scholar 

  25. François, R. J., Braun, J. & Khan, M. A. Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr. Opin. Rheumatol. 13, 255–264 (2001).

    Article  Google Scholar 

  26. Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol. 25, 629–648 (2009).

    Article  CAS  Google Scholar 

  27. Lories, R. J. U. & Luyten, F. P. Bone morphogenetic proteins in destructive and remodeling arthritis. Arthritis Res. Ther. 9, 207 (2007).

    Article  Google Scholar 

  28. Lories, R. J. U., Matthys, P., de Vlam, K., Derese, I. & Luyten, F. P. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann. Rheum. Dis. 63, 595–598 (2004).

    Article  CAS  Google Scholar 

  29. Zimmerman, L. B., De Jesús-Escobar, J. M. Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  Google Scholar 

  30. Lories, R. J. U., Derese, I. & Luyten, F. P. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J. Clin. Invest. 115, 1571–1579 (2005).

    Article  CAS  Google Scholar 

  31. Lories, R. J. U. et al. Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. Arthritis Rheum. 54, 1736–1746 (2006).

    Article  CAS  Google Scholar 

  32. Milat, F. & Ng, K. W. Is Wnt signalling the final common pathway leading to bone formation? Mol. Cell. Endocrinol. 310, 52–62 (2009).

    Article  CAS  Google Scholar 

  33. Liu, F., Kohlmeier, S. & Wang, C.-Y. Wnt signaling and skeletal development. Cell Signal 20, 999–1009 (2008).

    Article  CAS  Google Scholar 

  34. Lories, R. J. & Luyten, F. P. Osteoimmunology: Wnt antagonists: for better or worse? Nat. Rev. Rheumatol. 5, 420–421 (2009).

    Article  CAS  Google Scholar 

  35. Luyten, F. P., Tylzanowski, P. & Lories, R. J. Wnt signaling and osteoarthritis. Bone 44, 522–527 (2009).

    Article  CAS  Google Scholar 

  36. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  Google Scholar 

  37. Uderhardt, S. et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann. Rheum. Dis. 69, 592–597 (2010).

    Article  CAS  Google Scholar 

  38. van Beuningen, H. M., Glansbeek, H. L., van der Kraan, P. M. & van den Berg, W. B. Differential effects of local application of BMP-2 or TGF-β1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 6, 306–317 (1998).

    Article  CAS  Google Scholar 

  39. Scharstuhl, A., Vitters, E. L., van der Kraan, P. M. & van den Berg, W. B. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor β/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 48, 3442–3451 (2003).

    Article  CAS  Google Scholar 

  40. Lories, R. J. U., Derese, I., de Bari, C. & Luyten, F. P. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. Arthritis Rheum. 56, 489–497 (2007).

    Article  Google Scholar 

  41. van der Heijde, D. et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 58, 3063–3070 (2008).

    Article  Google Scholar 

  42. van der Heijde, D. et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum. 58, 1324–1331 (2008).

    Article  CAS  Google Scholar 

  43. van der Heijde, D. et al. Canadian (M03–606) study group & ATLAS study group Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res. Ther. 11, R127 (2009).

    Article  Google Scholar 

  44. Braun, J. & Baraliakos, X. Imaging of axial spondyloarthritis including ankylosing spondylitis. Ann. Rheum. Dis. 70 (Suppl. 1), i97–i103 (2011).

    Article  Google Scholar 

  45. Spoorenberg, A. et al. Measuring disease activity in ankylosing spondylitis: patient and physician have different perspectives. Rheumatology (Oxford) 44, 789–795 (2005).

    Article  CAS  Google Scholar 

  46. Maksymowych, W. P. Progress in spondylarthritis. Spondyloarthritis: lessons from imaging. Arthritis Res. Ther. 11, 222 (2009).

    Article  Google Scholar 

  47. Sieper, J. et al. Persistent reduction of spinal inflammation as assessed by magnetic resonance imaging in patients with ankylosing spondylitis after 2 yrs of treatment with the anti-tumour necrosis factor agent infliximab. Rheumatology (Oxford) 44, 1525–1530 (2005).

    Article  CAS  Google Scholar 

  48. Maksymowych, W. P. et al. Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum. 60, 93–102 (2009).

    Article  Google Scholar 

  49. Lu, X. et al. Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. J. Bone Miner. Res. 26, 209–219 (2011).

    Article  CAS  Google Scholar 

  50. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  Google Scholar 

  51. Kaplan, F. S. et al. Fibrodysplasia ossificans progressiva. Best Pract. Res. Clin. Rheumatol. 22, 191–205 (2008).

    Article  CAS  Google Scholar 

  52. Shore, E. M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 38, 525–527 (2006).

    Article  CAS  Google Scholar 

  53. Fukuda, T. et al. Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2. Genesis 44, 159–167 (2006).

    Article  CAS  Google Scholar 

  54. Yu, P. B. et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat. Med. 14, 1363–1369 (2008).

    Article  CAS  Google Scholar 

  55. Colbert, R. A., DeLay, M. L., Klenk, E. I. & Layh-Schmitt, G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol. Rev. 233, 181–202 (2010).

    Article  CAS  Google Scholar 

  56. Benjamin, M. & McGonagle, D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv. Exp. Med. Biol. 649, 57–70 (2009).

    Article  Google Scholar 

  57. McGonagle, D., Lories, R. J. U., Tan, A. L. & Benjamin, M. The concept of a “synovio-entheseal complex” and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum. 56, 2482–2491 (2007).

    Article  Google Scholar 

  58. Baraliakos, X., Listing, J., von der Recke, A. & Braun, J. The natural course of radiographic progression in ankylosing spondylitis—evidence for major individual variations in a large proportion of patients. J. Rheumatol. 36, 997–1002 (2009).

    Article  Google Scholar 

  59. Chen, H. A. et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J. Rheumatol. 37, 2126–2132 (2010).

    Article  CAS  Google Scholar 

  60. Tsukahara, S. et al. COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine (Phila Pa 1976) 30, 2321–2324 (2005)

    Article  Google Scholar 

  61. Thomas, G. P. & Brown, M. A. Genetics and genomics of ankylosing spondylitis. Immunol. Rev. 233, 162–180 (2010).

    Article  CAS  Google Scholar 

  62. Wanders, A. et al. Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum. 52, 1756–1765 (2005).

    Article  CAS  Google Scholar 

  63. Daoussis, D. et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 62, 150–158 (2010).

    Article  CAS  Google Scholar 

  64. Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).

    Article  CAS  Google Scholar 

  65. Appel, H. et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 60, 3257–3262 (2009).

    Article  Google Scholar 

  66. Herman, S., Krönke, G. & Schett, G. Molecular mechanisms of inflammatory bone damage: emerging targets for therapy. Trends Mol. Med. 14, 245–253 (2008).

    Article  CAS  Google Scholar 

  67. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    Article  CAS  Google Scholar 

  68. Parsonage, G., Filer, A. D., Haworth, O., Nash, G. B., Rainger, G. E., Salmon, M. & Buckley, C. D. A stromal address code defined by fibroblasts. Trends Immunol. 26, 150–156 (2005).

    Article  CAS  Google Scholar 

  69. Walsh, N. C. & Gravallese, E. M. Bone remodeling in rheumatic disease: a question of balance. Immunol. Rev. 233, 301–312 (2010).

    Article  CAS  Google Scholar 

  70. Schett, G. & David, J.-P. The multiple faces of autoimmune-mediated bone loss. Nat. Rev. Endocrinol. 6, 698–706 (2010).

    Article  CAS  Google Scholar 

  71. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  Google Scholar 

  72. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  Google Scholar 

  73. Scott, D. L., Wolfe, F. & Huizinga, T. W. J. Rheumatoid arthritis. Lancet 376, 1094–1108 (2010).

    Article  Google Scholar 

  74. Døhn, U. M. et al. No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: results from a longitudinal comparative MRI, ultrasonography, CT and radiography study. Ann. Rheum. Dis. 70, 252–258 (2011).

    Article  Google Scholar 

  75. Walsh, N. C. et al. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J. Bone Miner. Res. 24, 1572–1585 (2009).

    Article  CAS  Google Scholar 

  76. Aletaha, D., Funovits, J. & Smolen, J. S. Physical disability in rheumatoid arthritis is associated with cartilage damage rather than bone destruction. Ann. Rheum. Dis. 70, 733–739 (2011).

    Article  Google Scholar 

  77. Benjamin, M. & McGonagle, D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199, 503–526 (2001).

    Article  CAS  Google Scholar 

  78. Sieber, C., Kopf, J., Hiepen, C. & Knaus, P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 20, 343–355 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author has acted as a consultant for Abbott, MSD and Pfizer, has been a member of speakers bureau for MSD and Pfizer, and received grant or research support from Abbott and Pfizer. Katholieke Universiteit Leuven, Belgium, holds a patent on behalf of the author related to the use of bone morphogenetic protein antagonists in spondyloarthritis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lories, R. The balance of tissue repair and remodeling in chronic arthritis. Nat Rev Rheumatol 7, 700–707 (2011). https://doi.org/10.1038/nrrheum.2011.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing