Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of mitochondria in osteoarthritis

Abstract

Mitochondria are important regulators of cellular function and survival that may have a key role in aging-related diseases. Mitochondrial DNA (mtDNA) mutations and oxidative stresses are known to contribute to aging-related changes. Osteoarthritis (OA) is an aging-associated rheumatic disease characterized by articular cartilage degradation and elevated chondrocyte mortality. Articular cartilage chondrocytes survive and maintain tissue integrity in an avascular, low-oxygen environment. Recent ex vivo studies have reported mitochondrial dysfunction in human OA chondrocytes, and analyses of mitochondrial electron transport chain activity in these cells show decreased activity of Complexes I, II and III compared to normal chondrocytes. This mitochondrial dysfunction may affect several pathways that have been implicated in cartilage degradation, including oxidative stress, defective chondrocyte biosynthesis and growth responses, increased cytokine-induced chondrocyte inflammation and matrix catabolism, cartilage matrix calcification, and increased chondrocyte apoptosis. Mitochondrial dysfunction in OA chondrocytes may derive from somatic mutations in the mtDNA or from the direct effects of proinflammatory mediators such as cytokines, prostaglandins, reactive oxygen species and nitric oxide. Polymorphisms in mtDNA may become useful as biomarkers for the diagnosis and prognosis of OA, and modulation of serum biomarkers by mtDNA haplogroups supports the concept that mtDNA haplogroups may define specific OA phenotypes in the complex OA process.

Key Points

  • Mitochondrial functions, including mitochondrial respiratory chain (MRC) activity and ATP synthesis, are altered in osteoarthritis (OA) chondrocytes

  • Mitochondrial dysfunction may influence several of the specific pathways involved in OA pathology, including oxidative stress, chondrocyte apoptosis, cytokine-induced chondrocyte inflammation and matrix catabolism, and calcification of the cartilage matrix

  • OA chondrocyte mitochondrial dysfunction may originate from somatic mutations in the mitochondrial DNA (mtDNA) or from the direct effects of proinflammatory cytokines, prostaglandins, reactive oxygen species and nitric oxide on the MRC and ATP synthesis

  • mtDNA haplogroups may serve as useful biomarkers for the diagnosis or prognosis of OA, and might define distinct, specific OA phenotypes with different levels of serum OA biomarkers

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of mitochondria.
Figure 2: Diffusion of glucose and oxygen into articular cartilage.
Figure 3: SNPs giving rise to mtDNA haplogroups.
Figure 4: Influence of mtDNA haplogroups in OA.

Similar content being viewed by others

References

  1. Spector, T. D. Epidemiology of the rheumatic diseases. Curr. Opin. Rheumatol. 5, 132–137 (1993).

    Article  CAS  Google Scholar 

  2. Lotz, M. et al. Cytokine regulation of chondrocyte functions. J. Rheumatol. Suppl. 43, 104–108 (1995).

    CAS  PubMed  Google Scholar 

  3. Maneiro, E. et al. Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann. Rheum. Dis. 64, 388–395 (2005).

    Article  CAS  Google Scholar 

  4. Afonso, V., Champy, R., Mitrovic, D., Collin, P. & Lomri, A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74, 324–329 (2007).

    Article  CAS  Google Scholar 

  5. Henrotin, Y., Blanco, F. J., Aigner, T. & Kurz, B. The significance of oxidative stress in articular cartilage ageing and degradation. Curr. Rheumatol. Rev. 3, 261–274 (2007).

    Article  CAS  Google Scholar 

  6. Henze, K. & Martin, W. Evolutionary biology: essence of mitochondria. Nature 426, 127–128 (2003).

    Article  CAS  Google Scholar 

  7. Voet, D., Voet, J. G. & Pratt, C. W. Fundamentals of Biochemistry: Life at the Molecular Level 3rd edn (John Wiley & Sons, 2009).

    Google Scholar 

  8. Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland Science, New York, 2002).

    Google Scholar 

  9. Ross, P. L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  Google Scholar 

  10. Chinnery, P. F., Howell, N., Andrews, R. M. & Turnbull, D. M. Clinical mitochondrial genetics. J. Med. Genet. 36, 425–436 (1999).

    Article  CAS  Google Scholar 

  11. Marcus, R. E. The effect of low oxygen concentration on growth, glycolysis, and sulfate incorporation by articular chondrocytes in monolayer culture. Arthritis Rheum. 16, 646–656 (1973).

    Article  CAS  Google Scholar 

  12. Oegema, T. R. J. & Thompson, R. C. in Articular Cartilage Biochemistry (eds Kuettner, K. et al.) 257–271 (Raven Press, New York, 1986).

    Google Scholar 

  13. Shapiro, I. M., Tokuoka, T. & Silverton, S. F. in Cartilage: Molecular Aspects (eds Hall, B. K. & Newman, S. A.) 97–130 (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  14. Maroudas, A. in Adult Articular Cartilage (ed. Freeman, M. A. R.) 131–170 (Grune & Stratton, New York, 1973).

    Google Scholar 

  15. Falchuk, K. H., Goetzl, E. J. & Kulka, J. P. Respiratory gases of synovial fluids. An approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis. Am. J. Med. 49, 223–231 (1970).

    Article  CAS  Google Scholar 

  16. Lund-Oleson, K. Oxygen tension in synovial fluids. Arthritis Rheum. 13, 769–776 (1970).

    Article  Google Scholar 

  17. Zhou, S., Cui, Z. & Urban, J. P. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage–bone interface: a modeling study. Arthritis Rheum. 50, 3915–3924 (2004).

    Article  Google Scholar 

  18. Yamamoto, T. & Gay, C. V. Ultrastructural analysis of cytochrome oxidase in chick epiphyseal growth plate cartilage. J. Histochem. Cytochem. 36, 1161–1166 (1988).

    Article  CAS  Google Scholar 

  19. Henrotin, Y., Kurz, B. & Aigner, T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 13, 643–654 (2005).

    Article  CAS  Google Scholar 

  20. Maneiro, E. et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 48, 700–708 (2003).

    Article  CAS  Google Scholar 

  21. Johnson, K. et al. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum. 43, 1560–1570 (2000).

    Article  CAS  Google Scholar 

  22. Terkeltaub, R., Johnson, K., Murphy, A. & Ghosh, S. Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1, 301–319 (2002).

    Article  CAS  Google Scholar 

  23. Ruiz-Romero, C. et al. Hypoxia conditions differentially modulate human normal and osteoarthritic chondrocyte proteomes. J. Proteome Res. 9, 3035–3045 (2010).

    Article  CAS  Google Scholar 

  24. Tomita, M., Sato, E. F., Nishikawa, M., Yamano, Y. & Inoue, M. Nitric oxide regulates mitochondrial respiration and functions of articular chondrocytes. Arthritis Rheum. 44, 96–104 (2001).

    Article  CAS  Google Scholar 

  25. Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003).

    Article  CAS  Google Scholar 

  26. Cillero-Pastor, B. et al. Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis Rheum. 58, 2409–2419 (2008).

    Article  CAS  Google Scholar 

  27. Caramés, B. et al. Inhibition of mitochondrial respiratory chain induces an inflammatory response in human articular chondrocytes. Ann. Rheum. Dis. 64 (Suppl. 3), 142–143 (2005).

    Google Scholar 

  28. Lopez-Armada, M. J. et al. Mitochondrial activity is modulated by TNFα and IL-1β in normal human chondrocyte cells. Osteoarthritis Cartilage 14, 1011–1022 (2006).

    Article  CAS  Google Scholar 

  29. Landis, W. J. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage. Scan. Electron Microsc. 2, 555–570 (1979).

    Google Scholar 

  30. Shapiro, I. M. et al. Initiation of endochondral calcification is related to changes in the redox state of hypertrophic chondrocytes. Science 217, 950–952 (1982).

    Article  CAS  Google Scholar 

  31. Stockwell, R. A. The cell density of human articular and costal cartilage. J. Anat. 101, 753–763 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blanco, F., Guitian, R., Vázquez-Martul, E., de Toro, F. & Galdo, F. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum. 41, 284–289 (1998).

    Article  CAS  Google Scholar 

  33. Kim, H. A., Lee, Y. J., Seong, S. C., Choe, K. W. & Song, Y. W. Apoptotic chondrocyte death in human osteoarthritis. J. Rheumatol. 27, 455–462 (2000).

    CAS  PubMed  Google Scholar 

  34. Hashimoto, S., Ochs, R. L., Komiya, S. & Lotz, M. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum. 41, 1632–1638 (1998).

    Article  CAS  Google Scholar 

  35. Aigner, T. et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum. 44, 1304–1312 (2001).

    Article  CAS  Google Scholar 

  36. Aigner, T. & Kim, H. A. Apoptosis and cellular vitality: issues in osteoarthritic cartilage degeneration. Arthritis Rheum. 46, 1986–1996 (2002).

    Article  CAS  Google Scholar 

  37. Roach, H. I., Aigner, T. & Kouri, J. B. Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9, 265–277 (2004).

    Article  CAS  Google Scholar 

  38. Kim, H. A. & Blanco, F. J. Cell death and apoptosis in osteoarthritic cartilage. Curr. Drug Targets 8, 333–345 (2007).

    Article  CAS  Google Scholar 

  39. Torroni, A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).

    Article  CAS  Google Scholar 

  41. Taylor, S. W. et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 21, 281–286 (2003).

    Article  CAS  Google Scholar 

  42. Grishko, V. I., Ho, R., Wilson, G. L. & Pearsall, A. W. 4th. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage 17, 107–113 (2009).

    Article  CAS  Google Scholar 

  43. Chang, M. C. et al. Accumulaton of mitochondrial DNA with 4977-bp deletion in knee cartilage—an association with idiopathic osteoarthritis. Osteoarthritis Cartilage 13, 1004–1011 (2005).

    Article  Google Scholar 

  44. Ruiz-Romero, C. et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell. Proteomics 8, 172–189 (2009).

    Article  CAS  Google Scholar 

  45. Aigner, T. et al. Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum. 54, 3533–3547 (2006).

    Article  CAS  Google Scholar 

  46. Rachek, L. I., Grishko, V. I., Ledoux, S. P. & Wilson, G. L. Role of nitric oxide-induced mtDNA damage in mitochondrial dysfunction and apoptosis. Free Radic. Biol. Med. 40, 754–762 (2006).

    Article  CAS  Google Scholar 

  47. Del Carlo, M. Jr & Loeser, R. F. Nitric oxide-mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum. 46, 394–403 (2002).

    Article  CAS  Google Scholar 

  48. Whiteman, M., Rose, P., Siau, J. L. & Halliwell, B. Nitrite-mediated protection against hypochlorous acid-induced chondrocyte toxicity: a novel cytoprotective role of nitric oxide in the inflamed joint? Arthritis Rheum. 48, 3140–3150 (2003).

    Article  CAS  Google Scholar 

  49. Kuhn, K., D'Lima, D. D., Hashimoto, S. & Lotz, M. Cell death in cartilage. Osteoarthritis Cartilage 12, 1–16 (2004).

    Article  CAS  Google Scholar 

  50. Carlo, M. D. Jr & Loeser, R. F. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 48, 3419–3430 (2003).

    Article  Google Scholar 

  51. Whiteman, M. et al. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J. 18, 1395–1397 (2004).

    Article  CAS  Google Scholar 

  52. Kim, J. et al. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 18, 424–432 (2010).

    Article  CAS  Google Scholar 

  53. Dave, M. et al. The antioxidant resveratrol protects against chondrocyte apoptosis via effects on mitochondrial polarization and ATP production. Arthritis Rheum. 58, 2786–2797 (2008).

    Article  Google Scholar 

  54. Johnson, K. et al. Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum. 50, 1216–1225 (2004).

    Article  CAS  Google Scholar 

  55. van der Walt, J. M. et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am. J. Hum. Genet. 72, 804–811 (2003).

    Article  CAS  Google Scholar 

  56. Niemi, A. K. et al. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum. Genet. 112, 29–33 (2003).

    Article  CAS  Google Scholar 

  57. Rego-Perez, I., Fernandez-Moreno, M., Fernandez-Lopez, C., Arenas, J. & Blanco, F. J. Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum. 58, 2387–2396 (2008).

    Article  CAS  Google Scholar 

  58. Rego, I. et al. Role of European mitochondrial DNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain. Ann. Rheum. Dis. 69, 210–213 (2010).

    Article  CAS  Google Scholar 

  59. Rego-Pérez, I. et al. Mitochondrial DNA haplogroups modulate the serum levels of biomarkers in patients with osteoarthritis. Ann. Rheum. Dis. 69, 910–917 (2010).

    Article  Google Scholar 

  60. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  61. Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    Article  CAS  Google Scholar 

  62. Wallace, D. C., Ruiz-Pesini, E. & Mishmar, D. mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb. Symp. Quant. Biol. 68, 479–486 (2003).

    Article  CAS  Google Scholar 

  63. Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004).

    Article  CAS  Google Scholar 

  64. De Benedictis, G. et al. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J. 13, 1532–1536 (1999).

    Article  CAS  Google Scholar 

  65. Ross, O. A. et al. Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp. Gerontol. 36, 1161–1178 (2001).

    Article  CAS  Google Scholar 

  66. Wolf, B. B. & Green, D. R. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274, 20049–20052 (1999).

    Article  CAS  Google Scholar 

  67. Brunner, T. & Mueller, C. Apoptosis in disease: about shortage and excess. Essays Biochem. 39, 119–130 (2003).

    Article  CAS  Google Scholar 

  68. Pelletier, J. P., Fernandes, J. C., Jovanovic, D. V., Reboul, P. & Martel-Pelletier, J. Chondrocyte death in experimental osteoarthritis is mediated by MEK 1/2 and p38 pathways: role of cyclooxygenase-2 and inducible nitric oxide synthase. J. Rheumatol. 28, 2509–2519 (2001).

    CAS  PubMed  Google Scholar 

  69. D'Lima, D. D., Hashimoto, S., Chen, P. C., Colwell, C. W. Jr & Lotz, M. K. Human chondrocyte apoptosis in response to mechanical injury. Osteoarthritis Cartilage 9, 712–719 (2001).

    Article  CAS  Google Scholar 

  70. Huser, C. A., Peacock, M. & Davies, M. E. Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma. Osteoarthritis Cartilage 14, 1002–1010 (2006).

    Article  CAS  Google Scholar 

  71. Feng, L., Precht, P., Balakir, R. & Horton, W. E. Jr. Evidence of a direct role for Bcl-2 in the regulation of articular chondrocyte apoptosis under the conditions of serum withdrawal and retinoic acid treatment. J. Cell. Biochem. 71, 302–309 (1998).

    Article  CAS  Google Scholar 

  72. Malicev, E., Woyniak, G., Knezevic, M., Radosavljevic, D. & Jeras, M. Vitamin C induced apoptosis in human articular chondrocytes. Pflugers Arch. 440 (5 Suppl.), R46–R48 (2000).

    Article  Google Scholar 

  73. Venezian, R., Shenker, B. J., Datar, S. & Leboy, P. S. Modulation of chondrocyte proliferation by ascorbic acid and BMP-2. J. Cell. Physiol. 174, 331–341 (1998).

    Article  CAS  Google Scholar 

  74. Kraus, V. B. et al. Ascorbic acid increases the severity of spontaneous knee osteoarthritis in a guinea pig model. Arthritis Rheum. 50, 1822–1831 (2004).

    Article  CAS  Google Scholar 

  75. Kurz, B., Jost, B. & Schunke, M. Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice. Osteoarthrit is Cartilage 10, 119–126 (2002).

    Article  CAS  Google Scholar 

  76. Csaki, C., Keshishzadeh, N., Fischer, K. & Shakibaei, M. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem. Pharmacol. 75, 677–687 (2008).

    Article  CAS  Google Scholar 

  77. Grishko, V. et al. Effects of hyaluronic acid on mitochondrial function and mitochondria-driven apoptosis following oxidative stress in human chondrocytes. J. Biol. Chem. 284, 9132–9139 (2009).

    Article  CAS  Google Scholar 

  78. Coon, H. G. The genetics of the mitochondrial DNA of mammalian somatic cells, their hybrids and cybrids. Natl Cancer Inst. Monogr. 48, 45–55 (1978).

    Google Scholar 

  79. Trifunovic, A. Mitochondrial DNA and aging. Biochem. Biophys. Acta 1757, 611–617 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Secretaria I+D+I Xunta Galicia (PGIDIT06PXIC916175PN); Fundación Española de Reumatologia (programa GEN-SER); Instituto de Salud Carlos III (CIBER- CB06/01/0040); Fondo Investigacion Sanitaria-(PI 08/2028); Ministerio Ciencia e Innovacion PLE2009-0144, with participation of FEDER (European Community). Ignacio Rego was supported by Contrato de Apoyo a la Investigación-Fondo Investigación Sanitaria (CA06/01102). Cristina Ruiz-Romero was supported by Programa Miguel Servet, Fondo Investigación Sanitaria-Spain CP09/00114. The authors express their appreciation to Dr Joaquin Arenas and Miguel A. Martin for scientific criticism of their work on the mitochondrion and for their constant support in developing mitochondrial methodologies.

Author information

Authors and Affiliations

Authors

Contributions

I. Rego and C. Ruiz-Romero researched data for the article. All authors made substantial contributions to discussion of the content. F. J. Blanco wrote the article. All authors performed review/editing of the manuscript before submission.

Corresponding author

Correspondence to Francisco J. Blanco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, F., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7, 161–169 (2011). https://doi.org/10.1038/nrrheum.2010.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing