Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacologic therapy for osteoarthritis—the era of disease modification

Abstract

Osteoarthritis (OA) is a prevalent and disabling condition for which few safe and effective therapeutic options are available. Current approaches are largely palliative and in an effort to mitigate the rising tide of increasing OA prevalence and disease impact, modifying the structural progression of OA has become a focus of drug development. This Review describes disease modification and discusses some of the challenges involved in the discovery and development of disease-modifying OA drugs (DMOADs). A variety of targeted agents are in mature phases of development; specific agents that are beyond preclinical development in phase II and III trials and show promise as potential DMOADs are discussed. A research agenda with respect to disease modification in OA is also provided, and some of the future challenges we face in this field are discussed.

Key Points

  • Current therapeutic approaches for osteoarthritis (OA) are largely palliative

  • Modifying the structural progression of OA has become a focus of drug development

  • Numerous challenges face those involved in disease-modifying OA drugs (DMOADs) development

  • A number of DMOADs are currently in phase II and III clinical trials

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the knee joint depicting the synovial joint tissues affected in OA.
Figure 2: DMOADs that are currently in phase II and phase III trials in OA.

Similar content being viewed by others

References

  1. Nuki, G. Osteoarthritis: a problem of joint failure. Z. Rheumatol. 58, 142–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Eyre, D. R. Collagens and cartilage matrix homeostasis. Clin. Orthop. Relat. Res. 427 (Suppl.), S118–S122 (2004).

    Article  Google Scholar 

  3. Dillon, C. F., Rasch, E. K., Gu, Q. & Hirsch, R. Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991–94. J. Rheumatol. 33, 2271–2279 (2006).

    PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention (CDC). Prevalence and impact of chronic joint symptoms—seven states, 1996. MMWR Morb. Mortal. Wkly Rep. 47, 345–351 (1998).

  5. Dunlop, D. D., Manheim, L. M., Song, J. & Chang, R. W. Arthritis prevalence and activity limitations in older adults. Arthritis Rheum. 44, 212–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 41, 778–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y. et al. Prevalence of symptomatic hand osteoarthritis and its impact on functional status among the elderly: the Framingham Study. Am. J. Epidemiol. 156, 1021–1027 (2002).

    Article  PubMed  Google Scholar 

  8. Centers for Disease Control and Prevention (CDC). Prevalence of disabilities and associated health conditions among adults—United States, 1999. MMWR Morb. Mortal. Wkly Rep. 50, 120–125 (2001).

  9. Guccione, A. A. et al. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am. J. Public Health 84, 351–358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Centers for Disease Control and Prevention (CDC). Arthritis prevalence and activity limitations—United States, 1990. MMWR Morb. Mortal. Wkly Rep. 43, 433–438 (1994).

  11. Felson, D. T. An update on the pathogenesis and epidemiology of osteoarthritis. Radiol. Clin. North Am. 42, 1–9 (2004).

    Article  PubMed  Google Scholar 

  12. Blagojevic, M., Jinks, C., Jeffery, A. & Jordan, K. P. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18, 24–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Yoo, J. H. et al. A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. Knee Surg. Sports Traumatol. Arthrosc. 18, 824–830 (2010).

    Article  PubMed  Google Scholar 

  14. Glazier, R. H. et al. Management of common musculoskeletal problems: a survey of Ontario primary care physicians. CMAJ 158, 1037–1040 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hunter, D. J. Are there promising biologic therapies for osteoarthritis? Curr. Rheumatol. Rep. 10, 19–25 (2008).

    Article  PubMed  Google Scholar 

  16. Desai, S. P. et al. Recommendations for use of selective and nonselective nonsteroidal antiinflammatory drugs: an American College of Rheumatology white paper. Arthritis Rheum. 59, 1058–1073 (2008).

    Article  CAS  Google Scholar 

  17. Hunter, D. J., Le Graverand, M. P. & Eckstein, F. Radiologic markers of osteoarthritis progression. Curr. Opin. Rheumatol. 21, 110–117 (2009).

    Article  PubMed  Google Scholar 

  18. Verbruggen, G. Chondroprotective drugs in degenerative joint diseases. Rheumatology (Oxford) 45, 129–138 (2006).

    Article  CAS  Google Scholar 

  19. Hunter, D. J. & Hellio Le Graverand-Gastineau, M. P. How close are we to having structure-modifying drugs available? Rheum. Dis. Clin. North Am. 34, 789–802 (2008).

    Article  PubMed  Google Scholar 

  20. Le Graverand-Gastineau, M. P. Disease modifying osteoarthritis drugs: facing development challenges and choosing molecular targets. Curr. Drug Targets 11, 528–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Abramson, S. B., Attur, M. & Yazici, Y. Prospects for disease modification in osteoarthritis. Nat. Clin. Pract. Rheumatol. 2, 304–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Brandt, K. D. et al. Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum. 52, 2015–2025 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Dougados, M. et al. Evaluation of the structure-modifying effects of diacerein in hip osteoarthritis: ECHODIAH, a three-year, placebo-controlled trial. Evaluation of the chondromodulating effect of diacerein in OA of the hip. Arthritis Rheum. 44, 2539–2547 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. OARSI FDA OA initiative. www.oarsi.org [online], (2009).

  25. Wieland, H. A., Michaelis, M., Kirschbaum, B. J. & Rudolphi, K. A. Osteoarthritis—an untreatable disease? Nat. Rev. Drug Discov. 4, 331–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Jacobsen, S. & Sonne-Holm, S. Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey. Rheumatology (Oxford) 44, 211–218 (2005).

    Article  CAS  Google Scholar 

  27. Utting, M. R., Davies, G. & Newman, J. H. Is anterior knee pain a predisposing factor to patellofemoral osteoarthritis? Knee 12, 362–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Karlson, E. W. et al. Total hip replacement due to osteoarthritis: the importance of age, obesity, and other modifiable risk factors. Am. J. Med. 114, 93–98 (2003).

    Article  PubMed  Google Scholar 

  29. Flugsrud, G. B. et al. The impact of body mass index on later total hip arthroplasty for primary osteoarthritis: a cohort study in 1.2 million persons. Arthritis Rheum. 54, 802–807 (2006).

    Article  PubMed  Google Scholar 

  30. Felson, D. T. The sources of pain in knee osteoarthritis. Curr. Opin. Rheumatol. 17, 624–628 (2005).

    Article  PubMed  Google Scholar 

  31. Hunter, D. J. et al. A pathway and approach to biomarker validation and qualification for osteoarthritis clinical trials. Curr. Drug Targets 11, 536–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gossec, L. et al. OMERACT/OARSI initiative to define states of severity and indication for joint replacement in hip and knee osteoarthritis. J. Rheumatol. 34, 1432–1435 (2007).

    PubMed  Google Scholar 

  33. Lassere, M. N. A users guide to measurement in medicine. Osteoarthritis Cartilage 14 (Suppl. A), A10–A13 (2006).

    Article  PubMed  Google Scholar 

  34. Clinical development programs for drugs, devices, and biological products intended for the treatment of osteoarthritis (OA). www.fda.gov [online], (1999).

  35. Eckstein, F. et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 14, 974–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Kraus, V. B. & Burnett, B. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage (in press).

  37. Ornetti, P. et al. OARSI-OMERACT definition of relevant radiological progression in hip/knee osteoarthritis. Osteoarthritis Cartilage 17, 856–863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guermazi, A. et al. Imaging in osteoarthritis. Rheum. Dis. Clin. North Am. 34, 645–687 (2008).

    Article  PubMed  Google Scholar 

  39. Brandt, K. D., Radin, E. L., Dieppe, P. A. & van de Putte, L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis. 65, 1261–1264 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Papaioannou, N. A. et al. Effect of calcitonin in early and late stages of experimentally induced osteoarthritis. A histomorphometric study. Osteoarthritis Cartilage 15, 386–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Karsdal, M. A. et al. Calcitonin is involved in cartilage homeostasis: is calcitonin a treatment for OA? Osteoarthritis Cartilage 14, 617–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Karsdal, M. A., Sondergaard, B. C., Arnold, M. & Christiansen, C. Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann. NY Acad. Sci. 1117, 181–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Schnitzer, T. J. New pharmacologic approaches in the management of osteoarthritis. Arthritis Care Res. (Hoboken) 62, 1174–1180 (2010).

    Article  Google Scholar 

  44. Karsdal, M. A. et al. The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthritis Cartilage 18, 150–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Karsdal, M. A., Henriksen, K., Arnold, M. & Christiansen, C. Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption while sustaining osteoclast numbers improves bone quality. BioDrugs 22, 137–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Manicourt, D. H., Azria, M., Mindeholm, L., Thonar, E. J. & Devogelaer, J. P. Oral salmon calcitonin reduces Lequesne's algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum. 54, 3205–3211 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Efficacy and safety of oral salmon calcitonin in patients with knee osteoarthritis. ClinicalTrials.gov identifier: NCT00486434 [online], (2010).

  48. Efficacy and safety of oral salmon calcitonin in patients with knee osteoarthritis (OA 2 study). ClinicalTrials.gov identifier: NCT00704847 [online], (2010).

  49. Abramson, S. B. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res. Ther. 10 (Suppl. 2), S2 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A long-term, placebo-controlled X-ray study investigating the safety and efficacy of SD-6010 in subjects with osteoarthritis of the knee (ITIC). ClinicalTrials.gov identifier: NCT00565812 [online], (2010).

  51. Vuolteenaho, K., Moilanen, T., Knowles, R. G. & Moilanen, E. The role of nitric oxide in osteoarthritis. Scand. J. Rheumatol. 36, 247–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Griffith, D. L., Keck, P. C., Sampath, T. K., Rueger, D. C. & Carlson, W. D. Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc. Natl Acad. Sci. USA 93, 878–883 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Massagué, J., Attisano, L. & Wrana, J. L. The TGF-beta family and its composite receptors. Trends Cell Biol. 4, 172–178 (1994).

    Article  PubMed  Google Scholar 

  54. Sieber, C., Kopf, J., Hiepen, C. & Knaus, P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 20, 343–355 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Wozney, J. M. Overview of bone morphogenetic proteins. Spine (Phila. PA 1976) 27 (16 Suppl. 1), S2–S8 (2002).

    Article  Google Scholar 

  56. Cook, S. D. & Rueger, D. C. Osteogenic protein-1: biology and applications. Clin. Orthop. Relat. Res. 324, 29–38 (1996).

    Article  Google Scholar 

  57. Merrihew, C. et al. Alterations in endogenous osteogenic protein-1 with degeneration of human articular cartilage. J. Orthop. Res. 21, 899–907 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Nishida, Y., Knudson, C. B. & Knudson, W. Osteogenic protein-1 inhibits matrix depletion in a hyaluronan hexasaccharide-induced model of osteoarthritis. Osteoarthritis Cartilage 12, 374–382 (2004).

    Article  PubMed  Google Scholar 

  59. Jelic, M. et al. Regeneration of articular cartilage chondral defects by osteogenic protein-1 (bone morphogenetic protein-7) in sheep. Growth Factors 19, 101–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Cook, S. D., Patron, L. P., Salkeld, S. L. & Rueger, D. C. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J. Bone Joint Surg. Am. 85-A (Suppl. 3), 116–123 (2003).

    Article  Google Scholar 

  61. Sellers, R. S., Peluso, D. & Morris, E. A. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 79, 1452–1463 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Dose finding study of bone morphogenetic protein 7 (BMP-7) in subjects with osteoarthritis (OA) of the knee. ClinicalTrials.gov identifier: NCT01111045 [online], (2010).

  63. White-O'Connor, B. & Sobal, J. Nutrient intake and obesity in a multidisciplinary assessment of osteoarthritis. Clin. Ther. 9 (Suppl. B), 30–42 (1986).

    PubMed  Google Scholar 

  64. Lane, N. E. et al. Serum vitamin D levels and incident changes of radiographic hip osteoarthritis: a longitudinal study. Study of Osteoporotic Fractures Research Group. Arthritis Rheum. 42, 854–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. McAlindon, T. E. et al. Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann. Intern. Med. 125, 353–359 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Vitamin D to slow progression of knee osteoarthritis. ClinicalTrials.gov identifier: NCT00306774 [online], (2010).

  67. Zurich multiple endpoint vitamin D trial in knee OA patients. ClinicalTrials.gov identifier: NCT00599807 [online], (2010).

  68. Bello, A. E. & Oesser, S. Collagen hydrolyzate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr. Med. Res. Opin. 22, 2221–2232 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Moskowitz, R. W. Role of collagen hydrolyzate in bone and joint disease. Semin. Arthritis Rheum. 30, 87–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Adam, M. Therapy for osteoarthritis: which effects have preparations of gelatin? Therapiewoche 38, 2456–2461 (1991).

    Google Scholar 

  71. Benito-Ruiz, P. et al. A randomized controlled trial on the efficacy and safety of a food ingredient, collagen hydrolyzate, for improving joint comfort. Int. J. Food Sci. Nutr. 60 (Suppl. 2), 99–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. A placebo-controlled study of collagen hydrolyzate in subjects with knee osteoarthritis (OA) (NMR). ClinicalTrials.gov identifier: NCT00536302 [online], (2009).

  73. Moore, E. E. et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage 13, 623–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Ellman, M. B., An, H. S., Muddasani, P. & Im, H. J. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 420, 82–89 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. AS902330 in cartilage injury repair (CIR). ClinicalTrials.gov identifier: NCT01066871 [online], (2010).

  76. Henrotin, Y. E. et al. Avocado/soybean unsaponifiables increase aggrecan synthesis and reduce catabolic and proinflammatory mediator production by human osteoarthritic chondrocytes. J. Rheumatol. 30, 1825–1834 (2003).

    CAS  PubMed  Google Scholar 

  77. Ernst, E. Avocado-soybean unsaponifiables (ASU) for osteoarthritis—a systematic review. Clin. Rheumatol. 22, 285–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Blotman, F., Maheu, E., Wulwik, A., Caspard, H. & Lopez, A. Efficacy and safety of avocado/soybean unsaponifiables in the treatment of symptomatic osteoarthritis of the knee and hip. A prospective, multicenter, three-month, randomized, double-blind, placebo-controlled trial. Rev. Rhum. Engl. Ed. 64, 825–834 (1997).

    CAS  PubMed  Google Scholar 

  79. Appelboom, T., Schuermans, J., Verbruggen, G., Henrotin, Y. & Reginster, J. Y. Symptoms modifying effect of avocado/soybean unsaponifiables (ASU) in knee osteoarthritis. A double blind, prospective, placebo-controlled study. Scand. J. Rheumatol. 30, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Maheu, E. et al. Symptomatic efficacy of avocado/soybean unsaponifiables in the treatment of osteoarthritis of the knee and hip: a prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial with a six-month treatment period and a two-month followup demonstrating a persistent effect. Arthritis Rheum. 41, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Lequesne, M., Maheu, E., Cadet, C. & Dreiser, R. L. Structural effect of avocado/soybean unsaponifiables on joint space loss in osteoarthritis of the hip. Arthritis Rheum. 47, 50–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Evaluation of the structure modifying effect of avocado-soybean unsaponifiables in hip osteoarthritis (ERADIAS). ClinicalTrials.gov identifier: NCT01062737 [online], (2010).

  83. Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11, 738–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, X., Mao, Z. & Yu, C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J. Orthop. Res. 22, 742–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Chevalier, X., Mugnier, B. & Bouvenot, G. Targeted anti-cytokine therapies for osteoarthritis. Bull. Acad. Natl Med. 190, 1411–1420 (2006).

    CAS  PubMed  Google Scholar 

  86. Treatment for patients with osteoarthritis (OA). ClinicalTrials.gov identifier: NCT00110942 [online], (2008).

  87. Krzeski, P. et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther. 9, R109 (2009).

    Article  CAS  Google Scholar 

  88. Tu, G., Xu, W., Huang, H. & Li, S. Progress in the development of matrix metalloproteinase inhibitors. Curr. Med. Chem. 15, 1388–1395 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Fingleton, B. Matrix metalloproteinases as valid clinical targets. Curr. Pharm. Des. 13, 333–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Johnson, A. R. et al. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem. 282, 27781–27791 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Baragi, V. M. et al. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum. 60, 2008–2018 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Schett, G. Erosive arthritis. Arthritis Res. Ther. 9 (Suppl. 1), S2 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Salminen-Mankonen, H. J., Morko, J. & Vuorio, E. Role of cathepsin K in normal joints and in the development of arthritis. Curr. Drug Targets 8, 315–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Jones, A. R. et al. Binding and localization of recombinant lubricin to articular cartilage surfaces. J. Orthop. Res. 25, 283–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kashiwagi, M., Tortorella, M., Nagase, H. & Brew, K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J. Biol. Chem. 276, 12501–12504 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Hunter, D. Focusing osteoarthritis management on modifiable risk factors and future therapeutic prospects. Ther. Ad. Musc. Dis. 1, 35–47 (2009).

    Article  CAS  Google Scholar 

  98. Hunter, D. J. et al. Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative. Ann. Rheum. Dis. 68, 349–356 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Karachalios, T. et al. MR imaging findings in early osteoarthritis of the knee. Eur. J. Radiol. 50, 225–230 (2004).

    Article  PubMed  Google Scholar 

  100. Reichenbach, S. et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage 16, 1005–1010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Amin, S. et al. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum. 52, 3152–3159 (2005).

    Article  PubMed  Google Scholar 

  102. Roos, H., Adalberth, T., Dahlberg, L. & Lohmander, L. S. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage 3, 261–267 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Lohmander, L. S., Ostenberg, A., Englund, M. & Roos, H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50, 3145–3152 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Englund, M., Roos, E. M. & Lohmander, L. S. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: a sixteen-year followup of meniscectomy with matched controls. Arthritis Rheum. 48, 2178–2187 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Englund, M. & Lohmander, L. S. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum. 50, 2811–2819 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Andriacchi, T. P., Briant, P. L., Bevill, S. L. & Koo, S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin. Orthop. Relat. Res. 442, 39–44 (2006).

    Article  PubMed  Google Scholar 

  107. Peterfy, C. G., Schneider, E. & Nevitt, M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16, 1433–1441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Spector, T. D. et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res. Ther. 7, R625–R633 (2005).

    Article  CAS  Google Scholar 

  109. Bingham, C. O. 3rd et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum. 54, 3494–3507 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Clegg, D. O. et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med. 354, 795–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Reginster, J. Y. et al. Long-term effects of glucosamine sulfate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357, 251–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Pavelká, K. et al. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch. Intern. Med. 162, 2113–2123 (2002).

    Article  PubMed  Google Scholar 

  113. Kahan, A., Uebelhart, D., De Vathaire, F., Delmas, P. D. & Reginster, J. Y. Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 60, 524–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Raynauld, J. P. et al. Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicenter clinical trial using quantitative MRI. Ann. Rheum. Dis. 68, 938–947 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Listrat, V. et al. Arthroscopic evaluation of potential structure modifying activity of hyaluronan (Hyalgan) in osteoarthritis of the knee. Osteoarthritis Cartilage 5, 153–160 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Jubb, R. W., Piva, S., Beinat, L., Dacre, J. & Gishen, P. A one-year, randomised, placebo (saline) controlled clinical trial of 500–730 kDa sodium hyaluronate (Hyalgan) on the radiological change in osteoarthritis of the knee. Int. J. Clin. Pract. 57, 467–474 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D. J. Hunter is funded by an Australian Research Council Future Fellowship. I am grateful to the scientists from the Pharmaceutical and Biotech Industries who provided insightful comments on the first draft of this Review and whose efforts in pursuing the development of novel therapies for osteoarthritis are remarkable. In particular, I want to thank C. Beals (MERCK), A. Berton (Merck Serono), M. P. Hellio Le Graverand-Gastineau (Pfizer), J. Krop (Stryker), G. Matthews (Genzyme) and P. Mitchell (Eli Lilly).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D. J. Hunter receives grant/research support from the following companies/organizations: AstraZeneca, DonJoy, Eli Lilly, Genzyme, MERCK, NIH, Pfizer, Stryker and Wyeth.

Supplementary information

Supplementary Table 1

Human clinical trials of DMOADs. (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, D. Pharmacologic therapy for osteoarthritis—the era of disease modification. Nat Rev Rheumatol 7, 13–22 (2011). https://doi.org/10.1038/nrrheum.2010.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing