Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SOCS proteins, cytokine signalling and immune regulation

Key Points

  • Suppressor of cytokine signalling (SOCS) proteins are inhibitors of the Janus kinase–signal transducer and activator of transcription (JAK–STAT) pathways. SOCS1 also inhibits Toll-like receptor (TLR) signalling.

  • SOCS3 determines the different responses induced by the inflammatory cytokine interleukin-6 (IL-6) and the anti-inflammatory cytokine IL-10.

  • In dendritic cells (DCs), SOCS1 negatively regulates T helper 1 (TH1)-cell induction by DCs, whereas SOCS3 regulates the balance between TH2 and TH3 cells.

  • SOCS1 induced by microbes is an important mediator for interferon (IFN)-resistance.

  • In T cells, SOCS1 is important for proper positive and negative selection and CD8+ T-cell lineage determination because of the restriction of cytokine signalling during T-cell maturation.

  • SOCS1 and SOCS3 regulate TH-cell differentiation, including TH1, TH2, TH17 and TH3 cells.

  • SOCS1 and SOCS3 expression levels correlate with human allergy and inflammatory diseases including inflammation-associated tumours.

  • Overexpression or knockdown of SOCS proteins are therapeutic strategies for the treatment of autoimmune diseases and allergy and for the induction of antitumour immunity.

Abstract

Suppressor of cytokine signalling (SOCS) proteins are inhibitors of cytokine signalling pathways. Studies have shown that SOCS proteins are key physiological regulators of both innate and adaptive immunity. These molecules positively and negatively regulate macrophage and dendritic-cell activation and are essential for T-cell development and differentiation. Evidence is also emerging of the involvement of SOCS proteins in diseases of the immune system. In this Review we bring together data from recent studies on SOCS proteins and their role in immunity, and propose a cohesive model of how cytokine signalling regulates immune-cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure and function of SOCS proteins.
Figure 2: Cross-talk between SOCS and the NF-κB pathways.
Figure 3: Role of SOCS proteins in T-cell development and T helper (TH)-cell regulation.
Figure 4: Role of SOCS1 and SOCS3 in inflammation-associated tumorigenesis.

Similar content being viewed by others

References

  1. Nicola, N. A. Guidebook to Cytokines and Their Receptors (Oxford University Press, Oxford, 1994).

    Google Scholar 

  2. O'Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, 121–131 (2002).

    Article  Google Scholar 

  3. Naka, T., Fujimoto, M., Tsutsui, H. & Yoshimura, A. Regulation of cytokine and TLR signalings by SOCS and others. Adv. Immunol. 87, 61–122 (2005). This is a comprehensive review on the regulation of cytokine signalling and TLR signalling.

    Article  CAS  PubMed  Google Scholar 

  4. Ilangumaran, S., Ramanathan, S. & Rottapel, R. Regulation of the immune system by SOCS family adaptor proteins. Semin. Immunol. 16, 351–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Davey, G. M., Heath, W. R. & Starr, R. SOCS1: a potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue Antigens 67, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher, J. & Starr, R. The role of suppressors of cytokine signalling in thymopoiesis and T cell activation. Int. J. Biochem. Cell Biol. 37, 1774–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kubo, M., Hanada, T. & Yoshimura, A. Suppressors of cytokine signaling and immunity. Nature Immunol. 4, 1169–1176 (2003). This is a review on the regulation of immunity by SOCS proteins.

    Article  CAS  Google Scholar 

  8. Kamura, T. et al. VHL-box and SOCS-box domains determine binding specificity for Cul2–Rbx1 and Cul5–Rbx2 modules of ubiquitin ligases. Genes Dev. 18, 3055–3065 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vuong, B. Q. et al. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome. Mol. Cell. Biol. 24, 9092–9101 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flowers, L. O. et al. Characterization of a peptide inhibitor of Janus kinase 2 that mimics suppressor of cytokine signaling 1 function. J. Immunol. 172, 7510–7518 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Waiboci, L. W. et al. Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. J. Immunol. 178, 5058–5068 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Bullock, A. N., Debreczeni, J. E., Edwards, A. M., Sundstrom, M. & Knapp, S. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc. Natl Acad. Sci. USA. 103, 7637–7642 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergamin, E., Wu, J. & Hubbard, S. R. Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Structure 14, 1285–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Babon, J. J. et al. The structure of SOCS3 reveals the basis of the extended SH2 domain function and identifies an unstructured insertion that regulates stability. Mol. Cell 22, 205–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki, A. et al. The N-terminal truncated isoform of SOCS3 translated from an alternative initiation AUG codon under stress conditions is stable due to the lack of a major ubiquitination site, Lys-6. J. Biol. Chem. 278, 2432–2436 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, X. P. et al. Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proc. Natl Acad. Sci. USA. 99, 2175–2180 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peltola, K. J. et al. Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. Blood 103, 3744–3750 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Fenner, J. E. et al. Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity. Nature Immunol. 7, 33–39 (2006).

    Article  CAS  Google Scholar 

  19. Qing, Y., Costa-Pereira, A. P., Watling, D. & Stark, G. R. Role of tyrosine 441 of interferon-γ receptor subunit 1 in SOCS-1-mediated attenuation of STAT1 activation. J. Biol. Chem. 280, 1849–1853 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Sasaki, A. et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4, 339–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Machado, F. S. et al. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nature Med. 12, 330–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kinjyo, I. et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17, 583–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Car, B. D. et al. Interferon γ receptor deficient mice are resistant to endotoxic shock. J. Exp. Med. 179, 1437–1444 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Hanada, T. et al. Induction of hyper TH1 cell-type immune responses by dendritic cells lacking the suppressor of cytokine signaling-1 gene. J. Immunol. 174, 4325–4332 (2005). This is the first paper showing that SOCS1-deficient DCs have the potential to induce T H 1-cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  26. Chinen, T. et al. Suppressor of cytokine signaling-1 regulates inflammatory bowel disease in which both IFNγ and IL-4 are involved. Gastroenterology 130, 373–388 (2006). This paper shows that Socs1 and Tcra double-knockout mice develop severe colitis, which is dependent on the NF-κB and JAK–STAT pathways.

    Article  CAS  PubMed  Google Scholar 

  27. Gingras, S., Parganas, E., de Pauw, A., Ihle, J. N. & Murray, P. J. Re-examination of the role of suppressor of cytokine signaling 1 (SOCS1) in the regulation of toll-like receptor signaling. J. Biol. Chem. 279, 54702–54707 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1422 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mansell, A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nature Immunol. 7, 148–155 (2006). This report is the first to show that SOCS1 binds to MAL and regulates the phosphorylation of the NF-κB subunit p65.

    Article  CAS  Google Scholar 

  30. He, Y., Zhang, W., Zhang, R., Zhang, H. & Min, W. SOCS1 inhibits tumor necrosis factor-induced activation of ASK1–JNK inflammatory signaling by mediating ASK1 degradation. J. Biol. Chem. 281, 5559–5566 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Baetz, A., Frey, M., Heeg, K. & Dalpke, A. H. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J. Biol. Chem. 279, 54708–54715 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Qin, H., Wilson C. A., Lee, S. J. & Benveniste, E. N. IFN-β-induced SOCS-1 negatively regulates CD40 gene expression in macrophages and microglia. FASEB J. 20, 985–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kimura, A. et al. Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK–STAT. Proc. Natl Acad. Sci. USA. 102, 17089–17094 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006). This paper shows a differential role of innate immune recognition by TLRs in the development of commensal-dependent colitis.

    Article  CAS  PubMed  Google Scholar 

  35. Hanada, T., et al. IFNγ-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J. Exp. Med. 203, 1391–1397 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhan, A. K., Mizoguchi, E., Smith, R. N. & Mizoguchi, A. Colitis in transgenic and knockout animals as models of human inflammatory bowel disease. Immunol. Rev. 169, 195–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Yasukawa, H. et al. Yoshimura, A. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunol. 4, 551–556 (2003). This study is the first to show that SOCS3 determines the differences in function between IL-6 and IL-10. In addition, this study showed that sustained STAT3 activation is important for the suppression of LPS signals.

    Article  CAS  Google Scholar 

  38. El Kasmi, K. C. et al. General nature of the STAT3-activated anti-inflammatory response. J. Immunol. 177, 7880–7888 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Murray, P. J. The JAK–STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, L. M. et al. Expression of constitutively active STAT3 can replicate the cytokine-suppressive activity of interleukin-10 in human primary macrophages. J. Biol. Chem. 282, 6965–6975 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Nishinakamura, H. et al. An RNA-binding protein αCP-1 is involved in the STAT3-mediated suppression of NF-κB transcriptional activity. Int. Immunol. 19, 609–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Butcher, B. A. et al. IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-α in host macrophages. J. Immunol. 174, 3148–3152 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Saeij, J. P. et al. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445, 324–327 (2007). Reference 43 indicates that constitutive STAT3 activation by T. gondii infection is a mechanism of suppression of host inflammatory responses.

    Article  CAS  PubMed  Google Scholar 

  44. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2–STAT3 signaling pathway. Nature Immunol. 6, 844–851 (2005).

    Article  CAS  Google Scholar 

  45. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Med. 10, 48–54 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Ogata, H. et al. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-β1 production. Oncogene 25, 2520–2530 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Niwa, Y. et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24, 6406–6417 (2006).

    Article  CAS  Google Scholar 

  48. Cheon, H. et al. Prostaglandin E2 augments IL-10 signaling and function. J. Immunol. 177, 1092–1100 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Prele, C. M., Keith-Magee, A. L., Yerkovich, S. T., Murcha, M. & Hart, P. H. Suppressor of cytokine signalling-3 at pathological levels does not regulate lipopolysaccharide or interleukin-10 control of tumour necrosis factor-α production by human monocytes. Immunology 119, 8–17 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin, H. et al. IL-10 inhibits lipopolysaccharide-induced CD40 gene expression through Induction of suppressor of cytokine signaling-3. J. Immunol. 177, 7761–7771 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Qasimi, P. et al. Divergent mechanisms utilized by SOCS3 to mediate interleukin-10 inhibition of tumor necrosis factor α and nitric oxide production by macrophages. J. Biol. Chem. 281, 6316–6324 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Frobose, H. et al. Suppressor of cytokine signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol. Endocrinol. 20, 1587–1596 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. Bartz, H., Avalos, N. M., Baetz, A., Heeg, K. & Dalpke, A. H. Involvement of suppressors of cytokine signaling in toll-like receptor-mediated block of dendritic cell differentiation. Blood 108, 4102–4108 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Jackson, S. H., Yu, C. R., Mahdi, R. M., Ebong, S. & Egwuagu, C. E. Dendritic cell maturation requires STAT1 and is under feedback regulation by suppressors of cytokine signaling. J. Immunol. 172, 2307–2315 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Tsukada, J. et al. The role of suppressor of cytokine signaling 1 as a negative regulator for aberrant expansion of CD8α+ dendritic cell subset. Int. Immunol. 17, 1167–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Hanada, T. et al. Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity 19, 437–450 (2003). This study shows that SOCS1-deficient DCs efficiently stimulate B-cell proliferation in vitro and autoantibody production in vivo , and concludes that SOCS1 has an essential role in DC functions and in the suppression of systemic autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  57. Shen, L., Evel-Kabler, K., Strube, R. & Chen, S. Y. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nature Biotechnol. 22, 1546–1553 (2004). This is the first report showing that knockdown of Socs1 in DCs is useful for the induction of strong antitumour immunity.

    Article  CAS  Google Scholar 

  58. Song, X. T. et al. An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuators in dendritic cells. PLoS Med. 3, 11 (2006).

    Article  CAS  Google Scholar 

  59. Evel-Kabler, K., Song, X. T., Aldrich, M., Huang, X. F. & Chen, S. Y. SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J. Clin. Invest. 116, 90–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Li, Y., Chu, N., Rostami, A. & Zhang, G. X. Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2 phenotype that directs type 2 Th cell differentiation in vitro and in vivo. J. Immunol. 177, 1679–1688 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Kinjyo, I. et al. Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-β1. J. Exp. Med. 203, 1021–1031 (2006). This study shows that STAT3 and SOCS3 positively and negatively regulate IL-10 and TGFβ1 production by CD4+ T cells, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Flodstrom, M. et al. Target cell defense prevents the development of diabetes after viral infection. Nature Immunol. 3, 373–382 (2002).

    Article  CAS  Google Scholar 

  63. Yasukawa, H. et al. The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J. Clin. Invest. 111, 469–478 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bullen, D V. et al. The lack of suppressor of cytokine signalling-1 (SOCS1) protects mice from the development of cerebral malaria caused by Plasmodium berghei ANKA. Parasite Immunol. 25, 113–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Zimmermann, S., Murray, P. J., Heeg, K. & Dalpke, A. H. Induction of suppressor of cytokine signaling-1 by Toxoplasma gondii contributes to immune evasion in macrophages by blocking IFN-γ signaling. J. Immunol. 176, 1840–1847 (2006). This is an interesting report showing that SOCS1 induction by T. gondii is a strategy to escape from the action of IFNs.

    Article  CAS  PubMed  Google Scholar 

  66. Yajima, T. et al. Innate defense mechanism against virus infection within the cardiac myocyte requiring gp130–STAT3 signaling. Circulation 114, 2364–2373 (2006). This is the first report suggesting a protective role of STAT3 in virus infection.

    Article  CAS  PubMed  Google Scholar 

  67. Yu, Q., Park, J. H., Doan, L. L., Erman, B., Feigenbaum, L. & Singer, A. Cytokine signal transduction is suppressed in preselection double-positive thymocytes and restored by positive selection. J. Exp. Med. 203, 165–175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Catlett, I. M. & Hedrick, S. M. Suppressor of cytokine signaling 1 is required for the differentiation of CD4+ T cells. Nature Immunol. 6, 715–722 (2005). This study provides the first evidence that SOCS1 is important for the positive and negative selection of CD4+ and CD8+ T-cell lineage by preventing the harmful effects of inflammatory cytokines.

    Article  CAS  Google Scholar 

  69. Chong, M. M. et al. Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity 18, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Cornish, AL. et al. Suppressor of cytokine signaling-1 has IFN-γ-independent actions in T cell homeostasis. J. Immunol. 170, 878–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ramanathan, S., Gagnon, J., Leblanc, C., Rottapel, R. & Ilangumaran, S. Suppressor of cytokine signaling 1 stringently regulates distinct functions of IL-7 and IL-15 in vivo during T lymphocyte development and homeostasis. J. Immunol. 176, 4029–4041 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ilangumaran, S., Ramanathan, S., La Rose, J., Poussier, P. & Rottapel, R. Suppressor of cytokine signaling 1 regulates IL-15 receptor signaling in CD8+CD44high memory T lymphocytes. J. Immunol. 171, 2435–2445 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Davey, G. M. et al. SOCS-1 regulates IL-15-driven homeostatic proliferation of antigen-naive CD8 T cells, limiting their autoimmune potential. J. Exp. Med. 202, 1099–1108 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fujimoto, M. et al. A regulatory role for suppressor of cytokine signaling-1 in TH polarization in vivo. Int. Immunol. 14, 1343–1350 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Egwuagu, C. E. et al. Suppressors of cytokine signaling proteins are differentially expressed in Th1 and Th2 cells: implications for Th cell lineage commitment and maintenance. J. Immunol. 168, 3181–3187 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Seki, Y. et al. SOCS-3 regulates onset and maintenance of TH2-mediated allergic responses. Nature Med. 9, 1047–1054 (2003). This is the first report of a strong relationship between SOCS3 and T H 2 cells, as well as a link between SOCS3 and human allergic diseases.

    Article  CAS  PubMed  Google Scholar 

  77. Yamamoto, K., Yamaguchi, M., Miyasaka, N. & Miura, O. SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor β2 subunit. Biochem. Biophys. Res. Commun. 310, 1188–1193 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Takatori, H. et al. Stat5α inhibits IL-12-induced Th1 cell differentiation through the induction of suppressor of cytokine signaling 3 expression. J. Immunol. 174, 4105–4112 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Ozaki, A., Seki, Y., Fukushima, A. & Kubo, M. The control of allergic conjunctivitis by suppressor of cytokine signaling (SOCS)3 and SOCS5 in a murine model. J. Immunol. 175, 5489–5497 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Diehl, S. et al. Inhibition of TH1 differentiation by IL-6 is mediated by SOCS1. Immunity 13, 805–815 (2000). An interesting study showing that IL-6 inhibits T H 1-cell differentiation. This study should be re-evaluated in light of the recent evident that T H 1 cells and T H 17 cells cross-regulate each other.

    Article  CAS  PubMed  Google Scholar 

  81. Harada, M., et al. Functional polymorphism in the suppressor of cytokine signaling 1 gene associated with adult asthma. Am. J. Respir. Cell Mol. Biol. 36, 491–496 (2006).

    Article  PubMed  CAS  Google Scholar 

  82. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  83. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA. 103, 8137–8142 (2006). This is the first report of the negative regulatory role of SOCS3 in T H 17-cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wong, K. et al. SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J. Clin. Invest. 116, 1571–1581 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stumhofer, J. S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nature Immunol. 7, 937–945 (2006).

    Article  CAS  Google Scholar 

  87. Yoshimura, T. et al. Two-sided roles of IL-27: induction of TH1 differentiation on naive CD4+ T cells versus suppression of proinflammatory cytokine production including IL-23-induced IL-17 on activated CD4+ T cells partially through STAT3-dependent mechanism. J. Immunol. 177, 5377–5385 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Nagaki-Ohara, K. et al. Suppressor of cytokine signalling 1 in lymphocytes regulates the development of intestinal inflammation in mice. Gut 55, 212–219 (2006).

    Article  CAS  Google Scholar 

  91. Kasprzycka, M., Marzec, M., Liu, X., Zhang, Q. & Wasik, M. A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc. Natl Acad. Sci. USA. 103, 9964–9969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. TH17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Weniger, M. A. et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25, 2679–2684 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Melzner, I. et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105, 2535–2542 (2005). This is the first report showing the presence of SOCS1 mutations in lymphomas.

    Article  CAS  PubMed  Google Scholar 

  95. Limnander, A., Danial, N. N. & Rothman, P. B. v-Abl signaling disrupts SOCS-1 function in transformed pre-B cells. Mol. Cell 15, 329–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Jost, E., et al. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia 21, 505–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Yoshikawa, H. et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nature Genet. 28, 29–35 (2001). This is the first report showing silencing of SOCS1 gene expression in human HCC.

    CAS  PubMed  Google Scholar 

  98. Yoshimura, A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 97, 439–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, B., Guo, M., Herman, J. G. & Clark, D. P. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol. 163, 1101–1107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yoshida, T. et al. SOCS1 is a suppressor of liver fibrosis and hepatitis-induced carcinogenesis. J. Exp. Med. 199, 1701–1707 (2004). This paper shows that SOCS1 is an anti-oncogene of HCC by suppressing liver inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ogata, H. et al. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 131, 179–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Huang, Y., et al. Defective hepatic response to interferon and activation of suppressor of cytokine signaling 3 in chronic hepatitis C. Gastroenterology 132, 733–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Shouda, T. et al. Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J. Clin. Invest. 108, 1781–1788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jo, D., Liu, D., Yao, S., Collins, R. D. & Hawiger, J. Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nature Med. 11, 892–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Mujtaba, M. G. et al. Treatment of mice with the suppressor of cytokine signaling-1 mimetic peptide, tyrosine kinase inhibitor peptide, prevents development of the acute form of experimental allergic encephalomyelitis and induces stable remission in the chronic relapsing/remitting form. J. Immunol. 175, 5077–5086 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Flowers, L. O., Subramaniam, P. S., Johnson, H. M. A SOCS-1 peptide mimetic inhibits both constitutive and IL-6 induced activation of STAT3 in prostate cancer cells. Oncogene 24, 2114–2120 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Yang, R. et al. Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther. 13, 1714–1723 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Ueki, K., Kadowaki, T. & Kahn, C. R. Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol. Res. 33, 185–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Yamada, S., Shiono, S., Joo, A. & Yoshimura, A. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett. 534, 190–196 (2003). This is the first report of a computer simulation model for the JAK–STAT–SOCS pathway.

    Article  CAS  PubMed  Google Scholar 

  110. Yamada, S., Tsukada, J., Yoshimura, A. & Kubo, M. Computer simulation of the role of SOCS family protein in helper T cell differentiation. Int. Immunol. 18, 335–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Mendoza, L. A network model for the control of the differentiation process in Th cells. Biosystems 84, 101–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Qiao, X. et al. Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nature Immunol. 7, 302–310 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Nishi for preparing the manuscript. This work was supported by special grants-in-aid from the Ministry of Education, Science, Technology, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Yoshimura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Akihiko Yoshimura's homepage

Masato Kubo's homepage

Glossary

SRC homology 2 (SH2) domain

A protein domain that is commonly found in signal-transduction molecules. It interacts specifically with phosphotyrosine-containing peptides.

Lipoxins

Leukocyte-derived eicosanoids generated during the inflammatory response that act as downregulatory signals.

Endotoxic shock

A serious systemic disorder that leads to multiple organ failure and death. It is caused by an excessive release of lipopolysaccharide (also known as endotoxin) during Gram-negative bacterial infection.

Inflammatory bowel diseases

(IBDs). Inflammatory diseases of the colon are most commonly classified as ulcerative colitis and Crohn's disease, which are believed to be T helper 1 (TH1)-type diseases. However, interleukin-23 (IL-23) and TH17 cells have recently been shown to be involved in IBDs.

Small interfering RNA

(siRNA). Short double-stranded RNAs of 19–23 nucleotides that induce RNA interference (RNAi), a post-transcriptional process that leads to gene silencing in a sequence-specific manner.

Experimental autoimmune encephalomyelitis

(EAE). An experimental model of the human disease multiple sclerosis. Autoimmune disease is induced in experimental animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

Cardiomyopathy

The chronic form of myocarditis, which is an inflammatory disease of the heart that can be induced by various microbial and viral infections. A considerable part of the pathology seems to be a direct result of dysregulated activities of T helper 1 cells and CD8+ cytotoxic T lymphocytes.

Regulatory T cells

(TReg cells). A rare population of CD4+ T cells that naturally express high levels of CD25 (the interleukin-2 receptor α-chain) and the transcription factor forkhead box P3 (FOXP3) and have suppressive regulatory activity towards other T cells that are stimulated through their T-cell receptor. An absence of regulatory T cells or their dysfunction is associated with severe autoimmunity.

T helper 3 cells

(TH3 cells). A regulatory T-cell subset that was originally thought to be involved in oral tolerance, and that primarily secretes transforming growth factor-β (TGFβ). TGF-β produced by TH3 cells provides help for IgA class switching and has suppressive properties for both TH1 and TH2 cells. As the expression of CD25 and forkhead box P3 (FOXP3) is induced in T cells under experimental TH3-cell differentiation conditions (T-cell-receptor stimulation in the presence of interleukin-4 (IL-4), IL-10 and TGFβ), TH3 cells should be referred to as inducible regulatory T cells that expand in the periphery.

Nucleophosmin/anaplastic lymphoma kinase oncoprotein

(NPM/ALK oncoprotein). Oncogenic fusion tyrosine kinase which is associated with a specific type of non-Hodgkin's lymphoma. The chromosomal translocation between chromosome 5 and chromosome 2 results in fusion of the amino-terminal part of the ubiquitous nuclear protein NPM to the cytoplasmic fragment of the receptor tyrosine kinase ALK, creating a hybrid tyrosine kinase with constitutive activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7, 454–465 (2007). https://doi.org/10.1038/nri2093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing