Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b

Abstract

Integrins are critical for the migration and function of leukocytes in inflammation. However, the interaction between integrin αM (CD11b), which has high expression in monocytes and macrophages, and Toll-like receptor (TLR)-triggered innate immunity remains unclear. Here we report that CD11b deficiency enhanced TLR-mediated responses in macrophages, rendering mice more susceptible to endotoxin shock and Escherichia coli–caused sepsis. CD11b was activated by TLR-triggered phosphatidylinositol 3-OH kinase (PI(3)K) and the effector RapL and fed back to inhibit TLR signaling by activating the tyrosine kinases Src and Syk. Syk interacted with and induced tyrosine phosphorylation of MyD88 and TRIF, which led to degradation of these adaptor molecules by the E3 ubiquitin ligase Cbl-b. Thus, TLR-triggered, active CD11b integrin engages in crosstalk with the MyD88 and TRIF pathways and subsequently inhibits TLR signaling in innate immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Itgam-deficient mice have more production of proinflammatory cytokines when challenged with TLR ligands and are more susceptible to endotoxic shock.
Figure 2: Itgam-deficient mice are more susceptible to E. coli. infection and more resistant to L. monocytogenes infection.
Figure 3: Itgam deficiency enhances TLR-triggered production of proinflammatory cytokines and type I interferon in macrophages through increased activation of NF-κB and IRF3.
Figure 4: CD11b negatively regulates TLR-triggered inflammatory responses by enhancing activation of Src and Syk.
Figure 5: Activated Syk interacts with and phosphorylates MyD88 and TRIF.
Figure 6: Activated Syk promotes Cbl-b-mediated degradation of MyD88 and TRIF by inducing phosphorylation of Tyr227 on MyD88 and Tyr375 on TRIF.
Figure 7: Overexpression of phosphorylation-defective mutants of MyD88 and TRIF promotes the production of proinflammatory cytokines and IFN-β by amplifying TLR signaling.
Figure 8: An active CD11b signal inhibits TLR-triggered inflammatory responses by promoting degradation of MyD88 and TRIF in macrophages.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

NCBI Reference Sequence

References

  1. Barton, G.M. & Medzhitov, R. Toll-like receptor signaling pathways. Science 300, 1524–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O'Neill, L.A. When signaling pathways collide: positive and negative regulation of Toll-like receptor signal transduction. Immunity 29, 12–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Y., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nat. Rev. Immunol. 5, 941–952 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Abram, C.L. & Lowell, C.A. The expanding role for ITAM-based signaling pathways in immune cells. Sci. STKE 2007, re2 (2007).

    Article  PubMed  Google Scholar 

  9. Ivashkiv, L. Cross-regulation of signaling by ITAM-associated receptors. Nat. Immunol. 10, 340–347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bouchon, A., Facchetti, F., Weigand, M.A. & Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hamerman, J.A., Tchao, N.K., Lowell, C.A. & Lanier, L.L. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat. Immunol. 6, 579–586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ivashkiv, L. A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nat. Immunol. 8, 816–822 (2008).

    Article  CAS  Google Scholar 

  13. Abram, C.L. & Lowell, C.A. The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 27, 339–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kinashi, T. Intercellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Evans, R. et al. Integrins in immunity. J. Cell Sci. 122, 215–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Mócsai, A. et al. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat. Immunol. 7, 1326–1333 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lefort, C.T. et al. Outside-in signal transmission by conformational changes in integrin Mac-1. J. Immunol. 186, 6460–6468 (2009).

    Article  Google Scholar 

  18. Abdelbaqi, M. et al. Regulation of dextran sodium sulfate induced colitis by leukocyte β2 integrins. Lab. Invest. 86, 380–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ehirchiou, D. et al. CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. J. Exp. Med. 204, 1519–1524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hammerberg, C., Katiyar, S.K., Carroll, M.C. & Cooper, K.D. Activated complement component 3 (C3) is required for ultraviolet induction of immunosuppression and antigenic tolerance. J. Exp. Med. 187, 1133–1138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, M. et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 5, 1124–1133 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Tang, H. et al. Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood 108, 1189–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Xia, S. et al. Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood 112, 3175–3185 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, Q., Guo, Z., Xu, X., Xia, S. & Cao, X. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. Eur. J. Immunol. 38, 2751–2761 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Perera, P. et al. CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J. Immunol. 166, 574–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Behrens, E. et al. Complement receptor 3 ligation of dendritic cells suppresses their stimulatory capacity. J. Immunol. 178, 6268–6279 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Haziot, A. et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4, 407–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, L. & Kwaik, Y.A. The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol. 8, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hirahashi, J. et al. Mac-1 signaling via Src-family and Syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity 25, 271–283 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Ashley, M. et al. Suppressor of cytokine signaling negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol. 7, 148–155 (2006).

    Article  Google Scholar 

  31. Bachmaier, K. et al. E3 ubiquitin ligase Cbl-b regulates the acute inflammatory response underlying lung injury. Nat. Med. 13, 920–926 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Nikolaj, B., Steen, G. & Søren, B. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999).

    Article  Google Scholar 

  33. Shimaoka, M., Takagi, J. & Springer, T.A. Comformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Susannah, E. et al. Differential activation of LFA-1 and Mac-1 ligand binding domains. Biochem. Biophys. Res. Commun. 337, 142–148 (2005).

    Article  Google Scholar 

  35. Wang, L. et al. Indirect inhibition of Toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins. Immunity 32, 518–530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams, R.A., Davalos, C.S., Tsigelny, I. & Akassoglou, K. Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis. Curr. Med. Chem. 14, 2925–2936 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hu, X., Wohler, J.E., Dugger, K.J. & Barnum, S.R. β2-integrins in demyelinating disease: not adhering to the paradigm. J. Leukoc. Biol. 87, 397–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Tatsukata, K. et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat. Immunol. 10, 965–973 (2009).

    Article  Google Scholar 

  39. Silver, K.L. et al. MyD88-dependent autoimmune disease in Lyn-deficient mice. Eur. J. Immunol. 37, 2734–2743 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C. & Lo-man, R. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31, 761–771 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Fang, D. & Liu, Y. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat. Immunol. 29, 870–875 (2001).

    Article  Google Scholar 

  42. Fukao, T. & Koyasu, S. PI3K and negative regulation of TLR signaling. Trends Immunol. 24, 358–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, C. et al. The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon. Nat. Immunol. 10, 744–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. An, H. et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat. Immunol. 9, 542–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, T. et al. Fibronectin maintains survival of mouse natural killer (NK) cells via CD11b/Src/β-catenin pathway. Blood 114, 4081–4088 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. An, M. Zhang, T. Zhang, J. Hou, X. Liu and T. Chen for discussions; F. He for statistical assistance; Y. Li and M. Jin for technical assistance; C. Ni for pathological analysis; S. Akira (Research Institute for Microbial Diseases, Osaka University) for Myd88-deficient mice; H. Yao (Zhejiang University) for E. coli; H. Shen (University of Pennsylvania School of Medicine) for L. monocytogenes; and M. Liu (Shanghai Institute of Biochemistry and Cell Biology) for lentiviral vector. Supported by the National Natural Science Foundation of China (30721091 and 30572121), the National Key Basic Research Program of China (2007CB512403 and 2010CB911903) and the Shanghai Committee of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and C.H. designed the experiments; C.H., J.J., S.X., H.L. and N.L. did the experiments; and X.C. and C.H. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Xuetao Cao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 934 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Jin, J., Xu, S. et al. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 11, 734–742 (2010). https://doi.org/10.1038/ni.1908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing