Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren's syndrome at 7q11.23

Abstract

Primary Sjögren's syndrome is one of the most common autoimmune diseases. So far, genetic studies of Sjögren's syndrome have relied mostly on candidate gene approaches. To identify new genetic susceptibility loci for primary Sjögren's syndrome, we performed a three-stage genome-wide association study in Han Chinese. In the discovery stage, we analyzed 556,134 autosomal SNPs in 542 cases and 1,050 controls. We then validated promising associations in 2 replication stages comprising 1,303 cases and 2,727 controls. The combined analysis identified GTF2I at 7q11.23 (rs117026326: Pcombined = 1.31 × 10−53, combined odds ratio (ORcombined) = 2.20) as a new susceptibility locus for primary Sjögren's syndrome. Our analysis also confirmed previously reported associations in Europeans in the regions of STAT4, TNFAIP3 and the major histocompatibility complex (MHC). Fine mapping of the region around GTF2I showed that rs117026326 in GTF2I had the most significant association, with associated SNPs extending from GTF2I to GTF2IRD1-GTF2I.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional plot of association results for the newly identified primary Sjögren's syndrome susceptibility locus at 7q11.23.

Similar content being viewed by others

References

  1. Fox, R.I. Sjogren's syndrome. Lancet 366, 321–331 (2005).

    CAS  PubMed  Google Scholar 

  2. Helmick, C.G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 58, 15–25 (2008).

    PubMed  Google Scholar 

  3. Zhang, N.Z. et al. Prevalence of primary Sjogren's syndrome in China. J. Rheumatol. 22, 659–661 (1995).

    CAS  PubMed  Google Scholar 

  4. Ice, J.A. et al. Genetics of Sjogren's syndrome in the genome-wide association era. J. Autoimmun. 39, 57–63 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cobb, B.L., Lessard, C.J., Harley, J.B. & Moser, K.L. Genes and Sjogren's syndrome. Rheum. Dis. Clin. North Am. 34, 847–868 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Palomino-Morales, R.J., Diaz-Gallo, L.M., Witte, T., Anaya, J.M. & Martin, J. Influence of STAT4 polymorphism in primary Sjogren's syndrome. J. Rheumatol. 37, 1016–1019 (2010).

    CAS  PubMed  Google Scholar 

  7. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams, P.H. et al. Horizons in Sjogren's syndrome genetics. Clin. Rev. Allergy Immunol. 32, 201–209 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang, H.I. et al. Comparison of HLA class II genes in Caucasoid, Chinese, and Japanese patients with primary Sjogren's syndrome. J. Immunol. 150, 3615–3623 (1993).

    CAS  PubMed  Google Scholar 

  10. Gottenberg, J.E. et al. In primary Sjogren's syndrome, HLA class II is associated exclusively with autoantibody production and spreading of the autoimmune response. Arthritis Rheum. 48, 2240–2245 (2003).

    CAS  PubMed  Google Scholar 

  11. Gill, H.K. et al. Defining p47-phox deficient chronic granulomatous disease in a Malay family. Asian Pac. J. Allergy Immunol. 30, 313–320 (2012).

    CAS  PubMed  Google Scholar 

  12. Vandeweyer, G., Van der Aa, N., Reyniers, E. & Kooy, R.F. The contribution of CLIP2 haploinsufficiency to the clinical manifestations of the Williams-Beuren syndrome. Am. J. Hum. Genet. 90, 1071–1078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy, A.L. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 492, 32–41 (2012).

    CAS  PubMed  Google Scholar 

  14. Tassabehji, M. et al. GTF2IRD1 in craniofacial development of humans and mice. Science 310, 1184–1187 (2005).

    CAS  PubMed  Google Scholar 

  15. Korman, B.D. et al. Variant form of STAT4 is associated with primary Sjogren's syndrome. Genes Immun. 9, 267–270 (2008).

    CAS  PubMed  Google Scholar 

  16. Nordmark, G. et al. Additive effects of the major risk alleles of IRF5 and STAT4 in primary Sjogren's syndrome. Genes Immun. 10, 68–76 (2009).

    CAS  PubMed  Google Scholar 

  17. Gestermann, N. et al. STAT4 is a confirmed genetic risk factor for Sjogren's syndrome and could be involved in type 1 interferon pathway signaling. Genes Immun. 11, 432–438 (2010).

    CAS  PubMed  Google Scholar 

  18. Musone, S.L. et al. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun. 12, 176–182 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, J.W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    CAS  PubMed  Google Scholar 

  20. Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 6, e1000841 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1 and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 92, 41–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Okada, Y. et al. A genome-wide association study identified AFF1 as a susceptibility locus for systemic lupus eyrthematosus in Japanese. PLoS Genet. 8, e1002455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    CAS  PubMed  Google Scholar 

  24. Graham, R.R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chung, S.A. et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 7, e1001323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Radstake, T.R. et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet. 42, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mells, G.F. et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 43, 329–332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimane, K. et al. The association of a nonsynonymous single-nucleotide polymorphism in TNFAIP3 with systemic lupus erythematosus and rheumatoid arthritis in the Japanese population. Arthritis Rheum. 62, 574–579 (2010).

    CAS  PubMed  Google Scholar 

  30. Musone, S.L. et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet. 40, 1062–1064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Plenge, R.M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Coenen, M.J. et al. Common and different genetic background for rheumatoid arthritis and coeliac disease. Hum. Mol. Genet. 18, 4195–4203 (2009).

    CAS  PubMed  Google Scholar 

  33. Trynka, G. et al. Coeliac disease–associated risk variants in TNFAIP3 and REL implicate altered NF-κB signalling. Gut 58, 1078–1083 (2009).

    CAS  PubMed  Google Scholar 

  34. Toussirot, E. & Roudier, J. Epstein-Barr virus in autoimmune diseases. Best Pract. Res. Clin. Rheumatol. 22, 883–896 (2008).

    CAS  PubMed  Google Scholar 

  35. Perl, A. Emerging new pathways of pathogenesis and targets for treatment in systemic lupus erythematosus and Sjogren's syndrome. Curr. Opin. Rheumatol. 21, 443–447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vitali, C. et al. Classification criteria for Sjogren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 61, 554–558 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hancock, D.B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

    CAS  PubMed  Google Scholar 

  38. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed  PubMed Central  Google Scholar 

  39. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  PubMed  Google Scholar 

  40. Altshuler, D.M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    CAS  PubMed  Google Scholar 

  41. Shi, Y. et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat. Genet. 43, 1215–1218 (2011).

    CAS  PubMed  Google Scholar 

  42. Hu, Z. et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat. Genet. 43, 792–796 (2011).

    CAS  PubMed  Google Scholar 

  43. Chen, J. et al. Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. Am. J. Hum. Genet. 85, 775–785 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson, C.A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    CAS  PubMed  Google Scholar 

  48. Yang, Y., He, C. & Ott, J. Testing association with interactions by partitioning chi-squares. Ann. Hum. Genet. 73, 109–117 (2009).

    CAS  PubMed  Google Scholar 

  49. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Abecasis, G.R. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    PubMed  Google Scholar 

  51. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, T.P. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26, 2474–2476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stranger, B.E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all participants recruited in this study. This work was supported by grants from the Research Special Fund for Public Welfare Industry of Health (201202004 to Fengchun Zhang), the National Science Technology Pillar Program in the 11th Five-Year Plan (2008BAI59B03 to Fengchun Zhang), the National Program on Key Research Project of New Drug Innovation (2012ZX09303006-002 to Fengchun Zhang), the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-J-8 to J.W.), the CAS/SAFEA International Partnership Program for Creative Research Teams (Y2CX131003 to J.W.) and the National Natural Science Foundation of China (81072486 and 81172857 to Yongzhe Li and 81101545 to K.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Fengchun Zhang and J.W. conceived and designed the overall project. Yongzhe Li and H.C. directed and managed sample collection and diagnosis. K.Z. supervised data analysis. Yongzhe Li, K.Z., H.C., F.S., Juanjuan Xu and Z.W. managed clinical information and genotyping. K.Z., L. Zhang, Y.D. and J.O. performed statistical data analysis. K.Z. and J.W. wrote the manuscript. J.O., L. Zhang, Yongzhe Li, H.C. and Fengchun Zhang revised the manuscript. The following authors contributed to sample collection: F.S., Juanjuan Xu, Z.W., P.L., H. Luan, Xi Li, L. Wu, H. Li, H.W., Xiangpei Li, Xiaomei Li, Xiao Zhang, L.G., L.D., L.S., X. Zuo, Jianhua Xu, H.G., Z.L., S.T., M.W., Xiaofeng Li, W.X., G.W., P.Z., M.S., S.L., D.Z., W.L., Yi Wang, C.H., Q.J., G.L., B.L., S.H., W. Zhang, Z.Z., X.Y., M.L., W.H., C.Z., X. Leng, L.B., Yongfu Wang, Fengxiao Zhang, Q.S., W.Q., Xuewu Zhang, Y. Jia, J.S., Q.L., Y.H., Q. Wu, D.X., W. Zheng, M.Z., Q. Wang, Y.F., Xuan Zhang, J.L., Y. Jiang, X.T., L. Zhao, L. Wang, B.Z., Yang Li, Y.Z. and X. Zeng. Fengchun Zhang, J.W., Yongzhe Li and K.Z. obtained funding for this study. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jing Wang or Fengchun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–8 (PDF 1736 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhang, K., Chen, H. et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren's syndrome at 7q11.23. Nat Genet 45, 1361–1365 (2013). https://doi.org/10.1038/ng.2779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing