Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sporadic inclusion body myositis—diagnosis, pathogenesis and therapeutic strategies

Abstract

Sporadic inclusion body myositis (sIBM) presents with a characteristic clinical phenotype of slow-onset weakness and atrophy, affecting proximal and distal limb muscles and facial and pharyngeal muscles. Histologically, sIBM is characterized by chronic myopathic features, lymphocytic infiltrates invading non-vacuolated fibers, vacuolar degeneration, and accumulation of amyloid-related proteins. The cause of sIBM is unclear, but two processes—one autoimmune and the other degenerative—appear to occur in parallel. In contrast to dystrophies, in sIBM the autoinvasive CD8+ T cells are cytotoxic and antigen-driven, invading muscle fibers expressing major histocompatibility complex class I antigen and costimulatory molecules. The concurrent degenerative features include vacuolization, filamentous inclusions and intracellular accumulations of amyloid-β-related molecules. Although viruses have not been amplified from the muscle fibers, at least 12 cases of sIBM have been seen in association with retroviral infections, indicating that a chronic persistent viral infection might be a potential triggering factor. Emerging data imply that continuous upregulation of cytokines and major histocompatibility complex class I on the muscle fibers causes an endoplasmic reticulum stress response, resulting in intracellular accumulation of misfolded glycoproteins and activation of the transcription factor NFκB, leading to further cytokine activation. In spite of the brisk, antigen-driven T-cell infiltrates, sIBM does not respond to immunotherapies. New therapies using monoclonal antibodies against lymphocyte signaling pathways might prove helpful in arresting disease progression.

Key Points

  • Sporadic inclusion body myositis (sIBM) is a slowly progressive myopathy that affects proximal and distal muscles; its histopathology is characterized by autoimmune inflammatory features combined with degenerative features

  • Involvement of quadriceps and deep finger flexors are clues to early diagnosis; neck flexors and extensors are also frequently affected

  • The clinical diagnosis of sIBM is confirmed by muscle biopsy, and is aided by electromyography and determination of serum muscle enzyme levels

  • The cause of sIBM is unclear, but two processes—one autoimmune and the other degenerative—appear to occur in parallel

  • Several cases of sIBM have been seen in association with retroviral infections, indicating that a chronic persistent viral infection might be a potential triggering factor

  • Despite the involvement of primary immune factors in the pathogenesis of sIBM, this disease remains resistant to most immunotherapies; a study using alemtuzumab, a T-cell-depleting monoclonal antibody, is currently in progress

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristic histological features in cross-sections of muscle biopsies in patients with sporadic inclusion body myositis.
Figure 2: Sequence of immunopathological changes in sporadic inclusion body myositis.
Figure 3: Assembly of MHC class I peptide complexes in the ER of the muscle fiber for antigen presentation, and translocation of misfolded MHC class I heavy chain glycoproteins to the cytoplasm.
Figure 4: Proposed mechanism for the pathogenesis of inclusion body myositis.

Similar content being viewed by others

References

  1. Dalakas MC (1991) Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 325: 1487–1498

    Article  CAS  PubMed  Google Scholar 

  2. Sekul EA and Dalakas MC (1993) Inclusion body myositis: new concepts. Semin Neurol 13: 256–263

    Article  CAS  PubMed  Google Scholar 

  3. Griggs RC et al. (1995) Inclusion body myositis and myopathies. Ann Neurol 38: 705–713

    Article  CAS  PubMed  Google Scholar 

  4. Mikol J and Engel AG (2004) Inclusion body myositis. In Myology, edn 2, 1367–1388 (Eds Engel AG and Franzini-Armstrong C) New York: McGraw–Hill

    Google Scholar 

  5. Askanas V and Engel WK (2003) Proposed pathogenetic cascade of inclusion-body myositis: importance of amyloid-beta, misfolded proteins, predisposing genes, and aging. Curr Opin Rheumatol 15: 737–744

    Article  CAS  PubMed  Google Scholar 

  6. Phillips BA et al. (2000) Prevalence of sporadic inclusion body myositis in Western Australia. Muscle Nerve 23: 970–972

    Article  CAS  PubMed  Google Scholar 

  7. Badrising UA et al. (2000) Epidemiology of inclusion body myositis in the Netherlands: a nationwide study. Neurology 55: 1385–1387

    Article  CAS  PubMed  Google Scholar 

  8. Luciano CA and Dalakas MC (1997) Inclusion body myositis: no evidence for a neurogenic component. Neurology 48: 29–33

    Article  CAS  PubMed  Google Scholar 

  9. Peng A et al. (2000) Disease progression in sporadic inclusion body myositis: observations in 78 patients. Neurology 55: 296–298

    Article  CAS  PubMed  Google Scholar 

  10. Sekul EA et al. (1997) Magnetic resonance imaging of the forearm as a diagnostic aid in patients with sporadic inclusion body myositis. Neurology 48: 863–866

    Article  CAS  PubMed  Google Scholar 

  11. Mendell JR et al. (1991) Amyloid filaments in inclusion body myositis: novel findings provide insight into nature of filaments. Arch Neurol 48: 1229–1234

    Article  CAS  PubMed  Google Scholar 

  12. Selcen D et al. (2004) Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. Brain 127: 439–451

    Article  PubMed  Google Scholar 

  13. Semino-Mora C and Dalakas MC (1988) Rimmed vacuoles with β-amyloid and ubiquitinated filamentous deposits in the muscles of patients with long-standing denervation (post-poliomyelitis muscular atrophy): similarities with inclusion body myositis. Human Pathol 29: 1128–1133

    Article  Google Scholar 

  14. Amato AA et al. (1996) Inclusion body myositis: clinical and pathological boundaries. Ann Neurol 40: 581–586

    Article  CAS  PubMed  Google Scholar 

  15. Koffman BM et al. (1998) HLA allele distribution distinguishes sporadic inclusion body myositis from hereditary inclusion body myopathies. J Neuroimmunol 84: 139–142

    Article  CAS  PubMed  Google Scholar 

  16. Price P et al. (2004) Two major histocompatibility complex haplotypes influence susceptibility to sporadic inclusion body myositis: critical evaluation of an association with HLA-DR3. Tissue Antigens 64: 575–580

    Article  CAS  PubMed  Google Scholar 

  17. Badrising UA et al. (2004) Associations with autoimmune disorders and HLA class I and II antigens in inclusion body myositis. Neurology 63: 2396–2398

    Article  CAS  PubMed  Google Scholar 

  18. Garlepp MJ et al. (1995) Apolipoprotein E epsilon 4 in inclusion body myositis. Ann Neurol 38: 957–959

    Article  CAS  PubMed  Google Scholar 

  19. Orth M et al. (2000) Sporadic inclusion body myositis not linked to prion protein codon 129 methionine homozygosity. Neurology 55: 1235

    Article  CAS  PubMed  Google Scholar 

  20. Sivakumar K et al. (1997) An inflammatory, familial, inclusion body myositis with autoimmune features and a phenotype identical to sporadic inclusion body myositis: studies in three families. Brain 120: 653–661

    Article  PubMed  Google Scholar 

  21. Sivakumar K and Dalakas MC (1996) The spectrum of familial inclusion body myopathies in 13 families and a description of a quadriceps-sparing phenotype in non-Iranian Jews. Neurology 47: 977–984

    Article  CAS  PubMed  Google Scholar 

  22. Eisenberg I et al. (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29: 83–87

    Article  CAS  PubMed  Google Scholar 

  23. Koffman BM et al. (1998) Autoimmune diseases and autoantibodies associated with sporadic inclusion body myositis. Muscle Nerve 21: 115–117

    Article  CAS  PubMed  Google Scholar 

  24. Dalakas MC and Illa I (1995) Common variable immunodeficiency and inclusion body myositis: a distinct myopathy mediated by natural killer cells. Ann Neurol 37: 806–810

    Article  CAS  PubMed  Google Scholar 

  25. Dalakas MC et al. (1997) Inclusion body myositis and paraproteinemia: incidence and immunopathologic correlations. Ann Neurol 41: 100–104

    Article  CAS  PubMed  Google Scholar 

  26. Dalakas MC (2006) Inflammatory, immune and viral aspects of inclusion-body myositis. Neurology 66 (Suppl): S33–S38

    Article  CAS  PubMed  Google Scholar 

  27. Dalakas MC (2002) Understanding the immunopathogenesis of inclusion-body myositis: present and future prospects. Rev Neurol (Paris) 158: 948–958

    CAS  PubMed  Google Scholar 

  28. Karpati G et al. (1988) Expression of immunoreactive major histocapability complex products in human skeletal muscles. Ann Neurol 23: 64–72

    Article  CAS  PubMed  Google Scholar 

  29. Michaelis D et al. (1993) Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes. Am J Pathol 143: 1142–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagaraju K et al. (2000) Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci USA 97: 9209–9214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt J et al. (2004) Upregulated inducible co-stimulator (ICOS) and ICOS-ligand in inclusion body myositis muscle: significance for CD8+ T cell cytotoxicity. Brain 127: 1182–1190

    Article  PubMed  Google Scholar 

  32. Goebels N et al. (1996) Differential expression of perforin in muscle-infiltrating T cell in polymyositis and dermatomyositis. J Clin Invest 97: 2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wiendl H et al. (2005) Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 26: 373–380

    Article  CAS  PubMed  Google Scholar 

  34. Behrens L et al. (1997) Cytotoxic mechanisms in inflammatory myopathies: co-expression of Fas and protective Bcl-2 in muscle fibres and inflammatory cells. Brain 120: 929

    Article  PubMed  Google Scholar 

  35. Schneider C et al. (1996) MHC class I mediated cytotoxicity does not induce apoptosis in muscle fibers nor in inflammatory T cells: studies in patients with polymyositis, dermatomyositis, and inclusion body myositis. J Neuropathol Exp Neurol 55: 1205–1209

    Article  CAS  PubMed  Google Scholar 

  36. Dalakas MC (1998) Molecular immunology and genetics of inflammatory muscle diseases. Arch Neurol 55: 1509–1512

    Article  CAS  PubMed  Google Scholar 

  37. Bender A et al. (1998) T-cell heterogeneity in muscle lesions of inclusion body myositis. J Neuroimmunol 84: 86–91

    Article  CAS  PubMed  Google Scholar 

  38. Muntzing K et al. (2003) Inclusion body myositis: clonal expansions of muscle-infiltrating T cells persist over time. Scand J Immunol 58: 195–200

    Article  CAS  PubMed  Google Scholar 

  39. Amemiya K et al. (2000) Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time:studies in repeated muscle biopsies. Brain 123: 2030–2039

    Article  PubMed  Google Scholar 

  40. Murata K and Dalakas MC (1999) Expression of the costimulatory molecule BB-1, the ligands CTLA-4 and CD28 and their mRNA in inflammatory myopathies. Am J Pathol 155: 453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiendel H et al. (2003) Muscle fibers and cultured muscle or cells express the B7.1/2 related costimulatory molecule ICOSL: implications for the pathogenesis of inflammatory myopathies. Brain 126: 1026–1035

    Article  Google Scholar 

  42. Figarella-Branger D et al. (2003) Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve 28: 659–682

    Article  CAS  PubMed  Google Scholar 

  43. De Bleecker JL et al. (2002) Differential expression of chemokines in inflammatory myopathies. Neurology 58: 1779–1785

    Article  CAS  PubMed  Google Scholar 

  44. Raju R et al. (2003) Expression of interferon-gamma inducible chemokines in the muscles of patients with inclusion body myositis. J Neuroimmunol 141: 125–131

    Article  CAS  PubMed  Google Scholar 

  45. Choi YC and Dalakas MC (2000) Expression of matrix metalloproteinases in the muscle of patients with inflammatory myopathies. Neurology 54: 65–71

    Article  CAS  PubMed  Google Scholar 

  46. Cupler EJ et al. (1996) Inclusion body myositis in HIV-I and HTLV-I infected patients. Brain 119: 1887–1893

    Article  PubMed  Google Scholar 

  47. Ozden S et al. (2004) Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis. J Virol 78: 10320–10327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saito M et al. (2002) Molecular analysis of T cell clonotypes in muscle-infiltrating lymphocytes from patients with human T lymphotropic virus type 1 polymyositis. J Infect Dis 186: 1231–1241

    Article  CAS  PubMed  Google Scholar 

  49. Ferrer I et al. (2005) Involvement of clusterin and the aggresome in abnormal protein deposits in myofibrillar myopathies and inclusion body myositis. Brain Pathol 15: 101–108

    Article  CAS  PubMed  Google Scholar 

  50. Nagaraju K et al. (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52: 1824–1835

    Article  CAS  PubMed  Google Scholar 

  51. Grandea AG 3rd and Van Kaer L (2001) Tapasin: an ER chaperone that controls MHC class I assembly with peptide. Trends Immunol 22: 194–199

    Article  CAS  PubMed  Google Scholar 

  52. Lehner PJ and Cresswell P (2004) Recent developments in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16: 82–89

    Article  CAS  PubMed  Google Scholar 

  53. Ferrer I et al. (2004) Proteasomal expression, induction of immunoproteasome subunits, and local MHC class I presentation in myofibrillar myopathy and inclusion body myositis. J Neuropathol Exp Neurol 63: 484–498

    Article  CAS  PubMed  Google Scholar 

  54. Vattemi G et al. (2004) Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am J Pathol 164: 1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Banwell BL and Engel AG (2000) αB-crystallin immunolocalization yields new insights into inclusion body myositis. Neurology 54: 1033–1041

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt J et al. (2005) Distinct interplay between inflammatory and degeneration-associated molecules in sporadic IBM. Neurology 64 (Suppl 1): A331–A338

    Google Scholar 

  57. Wileman T (2006) Aggresomes and autophagy generate sites for virus replication. Science 312: 875–878

    Article  CAS  PubMed  Google Scholar 

  58. Fratta P et al. (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167: 517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Greenberg SA (2001) DNA microarray gene expression analysis technology and its application to neurological disorders. Neurology 57: 755–761

    Article  CAS  PubMed  Google Scholar 

  60. Raju R and Dalakas MC (2005) Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biologic validation of clinical relevant genes. Brain 128: 1887–1896

    Article  PubMed  Google Scholar 

  61. Dalakas MC (2003) Therapeutic approaches in patients with inflammatory myopathies. Semin Neurol 23: 199–206

    Article  PubMed  Google Scholar 

  62. Lindberg C et al. (2003) Anti-T-lymphocyte globulin treatment in inclusion body myositis: a randomized pilot study. Neurology 61: 260–262

    Article  CAS  PubMed  Google Scholar 

  63. Dalakas MC (2006) Mechanisms of Disease: signaling pathways and immunobiology of inflammatory myopathies. Nat Clin Pract Rheumatol 2: 219–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, NINDS.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalakas, M. Sporadic inclusion body myositis—diagnosis, pathogenesis and therapeutic strategies. Nat Rev Neurol 2, 437–447 (2006). https://doi.org/10.1038/ncpneuro0261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing