Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells

Abstract

To prime immune responses, dendritic cells (DCs) need to be activated to acquire T cell stimulatory capacity. Although some stimuli trigger interleukin 12 (IL-12) production that leads to T helper cell type 1 (TH1) polarization, others fail to do so and favor TH2 polarization. We show that after activation by lipopolysaccharide, DCs produced IL-12 only transiently and became refractory to further stimulation. The exhaustion of cytokine production impacted the T cell polarizing process. Soon after stimulation DCs primed strong TH1 responses, whereas at later time points the same cells preferentially primed TH2 and nonpolarized T cells. These findings indicate that during an immune response, T cell priming conditions may change in the lymph nodes, suggesting another mechanism for the regulation of effector and memory T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of cytokine production in maturing DCs.
Figure 2: Cytokine-producing capacity becomes exhausted following DC maturation.
Figure 3: wConditions favoring TH1 versus TH2 responses.
Figure 4: Correlation of effector function and CCR7 expression in DC priming.
Figure 5: Loss of CCR7 as a function of cell division and DC state.
Figure 6: Effect of duration of T-DC interaction.

Similar content being viewed by others

References

  1. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275– 283 (1998).

    Article  CAS  Google Scholar 

  2. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  3. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18 , 593–620 (2000).

    Article  CAS  Google Scholar 

  4. Gett, A. V. & Hodgkin, P. D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation . Proc. Natl Acad. Sci. USA 95, 9488– 9493 (1998).

    Article  CAS  Google Scholar 

  5. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle . Immunity 9, 229–237 (1998).

    Article  CAS  Google Scholar 

  6. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276 (1995).

    Article  CAS  Google Scholar 

  7. Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673 (1994).

    Article  CAS  Google Scholar 

  8. Glimcher, L. H. & Singh, H. Transcription factors in lymphocyte development-T and B cells get together. Cell 96, 13–23 (1999).

    Article  CAS  Google Scholar 

  9. Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J. Exp. Med. 182, 1579– 1584 (1995).

    Article  CAS  Google Scholar 

  10. Constant, S. L. & Bottomly, K. Induction of TH1 and TH2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    Article  CAS  Google Scholar 

  11. Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signalling determines T cell polarization. Eur. J. Immunol. 29, 3800 (1999).

    Article  Google Scholar 

  12. Kuchroo, V. K. et al. B7–1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy . Cell 80, 707–718 (1995).

    Article  CAS  Google Scholar 

  13. Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).

    Article  CAS  Google Scholar 

  14. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272 , 54–60 (1996).

    Article  CAS  Google Scholar 

  15. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  16. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  17. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  18. Medzhitov, R. & Janeway, C. A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  Google Scholar 

  19. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109– 1118 (1994).

    Article  CAS  Google Scholar 

  20. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249– 1255 (1999).

    Article  CAS  Google Scholar 

  21. Sallusto, F. & Lanzavecchia, A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J. Exp. Med. 189, 611–614 (1999).

    Article  CAS  Google Scholar 

  22. Cella, M., Sallusto, F. & Lanzavecchia, A. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10–16 (1997).

    Article  CAS  Google Scholar 

  23. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation . Science 283, 1183–1186 (1999).

    Article  CAS  Google Scholar 

  24. Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561 –567 (1999).

    Article  CAS  Google Scholar 

  25. Macatonia, S. E. et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154, 5071–5079 (1995).

    CAS  Google Scholar 

  26. Cella, M. et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 189, 821–829 (1999).

    Article  CAS  Google Scholar 

  27. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747 –752 (1996).

    Article  CAS  Google Scholar 

  28. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  Google Scholar 

  29. Whelan, M. et al. A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J. Immunol. 164, 6453–6460 (2000).

    Article  CAS  Google Scholar 

  30. Na, S. Y. et al. Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFkappaB. J. Biol. Chem. 274, 7674–7680 (1999).

    Article  CAS  Google Scholar 

  31. D'Ambrosio, D. et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J. Immunol. 161, 5111–5115 (1998).

    CAS  Google Scholar 

  32. Kalinski, P., Hilkens, C. M., Snijders, A., Snijdewint, F. G. & Kapsenberg, M. L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159, 28–35 (1997).

    CAS  Google Scholar 

  33. Panina-Bordignon, P. et al. Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J. Clin. Invest. 100, 1513–1519 (1997).

    Article  CAS  Google Scholar 

  34. Gagliardi, M. C. et al. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur. J. Immunol. 30, 2394–2403 (2000).

    Article  CAS  Google Scholar 

  35. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29, 1617–1625 (1999).

    Article  CAS  Google Scholar 

  36. Ma, X. et al. Inhibition of IL-12 production in human monocyte-derived macrophages by TNF. J. Immunol. 164, 1722– 1729 (2000).

    Article  CAS  Google Scholar 

  37. Karp, C. L. et al. Potent suppression of IL-12 production from monocytes and dendritic cells during endotoxin tolerance. Eur. J. Immunol. 28, 3128–3136 (1998).

    Article  CAS  Google Scholar 

  38. De Smedt, T. et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27, 1229– 1235 (1997).

    Article  CAS  Google Scholar 

  39. Aliberti, J. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nature Immunol. 1, 83–87 (2000 ).

    Article  CAS  Google Scholar 

  40. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–92l (1999).

    Article  CAS  Google Scholar 

  41. Kadowaki, N., Antonenko, S., Lau, J. Y. & Liu, Y. J. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219– 226 (2000).

    Article  CAS  Google Scholar 

  42. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nature Immunology 1, 305–310 (2000).

    Article  CAS  Google Scholar 

  43. Sad, S. & Mosmann, T. R. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype . J. Immunol. 153, 3514– 3522 (1994).

    CAS  Google Scholar 

  44. Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

    Article  CAS  Google Scholar 

  45. Rescigno, M., Martino, M., Sutherland, C. L., Gold, M. R. & Ricciardi-Castagnoli, P. Dendritic cell survival and maturation are regulated by different signaling pathways. J. Exp. Med. 188, 2175–2180 (1998).

    Article  CAS  Google Scholar 

  46. Traunecker, A., Oliveri, F. & Karjalainen, K. Myeloma based expression system for production of large mammalian proteins. Trends Biotechnol. 9, 109–113 (1991).

    Article  CAS  Google Scholar 

  47. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  48. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lipp and R. Förster for providing antibody to CCR7, H. Kohler, T. Hayden and D. Jarrossay for cell sorting, and I. Giacchetto for technical assistance. The Basel Institute for Immunology was founded and is supported by Hoffmann-La Roche. This work was also supported by Helmut Horten Foundation (to A. Lanzavecchia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Sallusto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenkamp, A., Messi, M., Lanzavecchia, A. et al. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1, 311–316 (2000). https://doi.org/10.1038/79758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing