Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology?

Abstract

The role of the 3′ untranslated region in posttranscriptional regulation of mRNA expression is being elucidated. Here we describe diseases arising from anomalies in this region, that affect the expression of one or more genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple functions for mRNA 3′ UTRs.
Figure 2: Hypothetical model of myotonic dystrophy.
Figure 3: Model of α-globin mRNA stabilization.

Similar content being viewed by others

Gregory J. Goodall & Vihandha O. Wickramasinghe

References

  1. Stebbins-Boaz, B. & Richter, J.D. Translational control during early development. Crit. Rev. Eukaryot. Gene Expr. 7, 73–94 (1997).

    Article  CAS  Google Scholar 

  2. Gao, F.B. Messenger RNAs in dendrites: localization, stability, and implications for neuronal function. Bioessays 20, 70–8 (1998).

    Article  CAS  Google Scholar 

  3. Richter, J.D. Cytoplasmic polyadenylation in development and beyond. Microbiol. Mol. Biol. Rev. 63, 446–56 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Stutz, A. et al. In vivo antisense oligodeoxynucleotide mapping reveals masked regulatory elements in an mRNA dormant in mouse oocytes. Mol. Cell. Biol. 17, 1759–1767 (1997).

    Article  CAS  Google Scholar 

  5. Stutz, A. et al. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev. 12, 2535–2548 (1998).

    Article  CAS  Google Scholar 

  6. Korade-Mirnics, Z., Babitzke, P. & Hoffman, E. Myotonic dystrophy: molecular windows on a complex etiology. Nucleic Acids Res. 26, 1363–1368 (1998).

    Article  CAS  Google Scholar 

  7. Timchenko, L.T. Myotonic dystrophy: the role of RNA CUG triplet repeats. Am. J. Hum. Genet. 64, 360–364 (1999).

    Article  CAS  Google Scholar 

  8. Groenen, P.J. et al. Constitutive and regulated modes of splicing produce six major myotonic dystrophy protein kinase (DMPK) isoforms with distinct properties. Hum. Mol. Genet. 9, 605–616 (2000).

    Article  CAS  Google Scholar 

  9. Storbeck, C.J., Sabourin, L.A., Waring, J.D. & Korneluk, R.G. Definition of regulatory sequence elements in the promoter region and the first intron of the myotonic dystrophy protein kinase gene. J. Biol. Chem. 273, 9139–9147 (1998).

    Article  CAS  Google Scholar 

  10. Strong, P.N. & Brewster, B.S. Myotonic dystrophy: molecular and cellular consequences of expanded DNA repeats are elusive. J. Inherit. Metab. Dis. 20, 159–170 (1997).

    Article  CAS  Google Scholar 

  11. Reddy, S. et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nature Genet. 13, 325–335 (1996).

    Article  CAS  Google Scholar 

  12. Davis, B.M., McCurrach, M.E., Taneja, K.L., Singer, R.H. & Housman, D.E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. USA 94, 7388–7393 (1997).

    Article  CAS  Google Scholar 

  13. Lu, X., Timchenko, N.A. & Timchenko, L.T. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet. 8, 53–60 (1999).

    Article  CAS  Google Scholar 

  14. Roberts, R. et al. Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc. Natl. Acad. Sci. USA 94, 13221–13226 (1997).

    Article  CAS  Google Scholar 

  15. Taneja, K.L., McCurrach, M., Schalling, M., Housman, D. & Singer, R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 128, 995–1002 (1995).

    Article  CAS  Google Scholar 

  16. Philips, A.V., Timchenko, L.T. & Cooper, T.A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280, 737–741 (1998).

    Article  CAS  Google Scholar 

  17. Timchenko, N.A., Welm, A.L., Lu, X. & Timchenko, L.T. CUG repeat binding protein (CUGBP1) interacts with the 5′ region of C/EBPβ mRNA and regulates translation of C/EBPβ isoforms. Nucleic Acids Res. 27, 4517–4525 (1999).

    Article  CAS  Google Scholar 

  18. Sasagawa, N., Takahashi, N., Suzuki, K. & Ishiura, S. An expanded CTG trinucleotide repeat causes trans RNA interference: a new hypothesis for the pathogenesis of myotonic dystrophy. Biochem. Biophys. Res. Commun. 264, 76–80 (1999).

    Article  CAS  Google Scholar 

  19. Boucher, C.A. et al. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 4, 1919–1925 (1995).

    Article  CAS  Google Scholar 

  20. Thornton, C.A., Wymer, J.P., Simmons, Z., McClain, C. & Moxley, R.T. 3rd. Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nature Genet. 16, 407–409 (1997).

    Article  CAS  Google Scholar 

  21. Klesert, T.R., Otten, A.D., Bird, T.D. & Tapscott, S.J. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nature Genet. 16, 402–406 (1997).

    Article  CAS  Google Scholar 

  22. Eriksson, M., Ansved, T., Edstrom, L., Anvret, M. & Carey, N. Simultaneous analysis of expression of the three myotonic dystrophy locus genes in adult skeletal muscle samples: the CTG expansion correlates inversely with DMPK and 59 expression levels, but notDMAHP levels. Hum. Mol. Genet. 8, 1053–1060 (1999).

    Article  CAS  Google Scholar 

  23. Chen, C.Y. & Shyu, A.B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).

    Article  CAS  Google Scholar 

  24. Peng, S.S., Chen, C.Y., Xu, N. & Shyu, A.B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).

    Article  CAS  Google Scholar 

  25. Rimokh, R. et al. Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle- cell lymphomas and t(11q13)-associated leukemias. Blood 83, 3689–3696 (1994).

    CAS  PubMed  Google Scholar 

  26. Chagnovich, D., Fayos, B.E. & Cohn, S.L. Differential activity of ELAV-like RNA-binding proteins in human neuroblastoma. J. Biol. Chem. 271, 33587–33591 (1996).

    Article  CAS  Google Scholar 

  27. Chagnovich, D. & Cohn, S.L. Binding of a 40-kDa protein to the N-myc 3′-untranslated region correlates with enhanced N-myc expression in human neuroblastoma. J. Biol. Chem. 271, 33580–33586 (1996).

    Article  CAS  Google Scholar 

  28. Chagnovich, D. & Cohn, S.L. Activity of a 40 kDa RNA-binding protein correlates with MYCN and c-fos mRNA stability in human neuroblastoma. Eur. J. Cancer 33, 2064–2067 (1997).

    Article  CAS  Google Scholar 

  29. Lai, W.S. et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol. Cell. Biol. 19, 4311–4323 (1999).

    Article  CAS  Google Scholar 

  30. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).

    Article  CAS  Google Scholar 

  31. Carballo, E., Lai, W.S. & Blackshear, P.J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).

    CAS  Google Scholar 

  32. Kontoyiannis, D., Pasparakis, M., Pizarro, T.T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    Article  CAS  Google Scholar 

  33. Weiss, I.M. & Liebhaber, S.A. Erythroid cell-specific mRNA stability elements in the α2-globin 3′ nontranslated region. Mol. Cell. Biol. 15, 2457–2465 (1995).

    Article  CAS  Google Scholar 

  34. Wang, X., Kiledjian, M., Weiss, I.M. & Liebhaber, S.A. Detection and characterization of a 3′ untranslated region ribonucleoprotein complex associated with human alpha-globin mRNA stability. Mol Cell Biol 15, 1769–1777 (1995); erratum: 15, 2331 (1995).

    Article  CAS  Google Scholar 

  35. Morales, J., Russell, J.E. & Liebhaber, S.A. Destabilization of human alpha-globin mRNA by translation anti- termination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail. J. Biol. Chem. 272, 6607–6613 (1997).

    Article  CAS  Google Scholar 

  36. Russell, J.E. & Liebhaber, S.A. The stability of human beta-globin mRNA is dependent on structural determinants positioned within its 3′ untranslated region. Blood 87, 5314–5323 (1996).

    CAS  PubMed  Google Scholar 

  37. Kobayashi, K. et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392 (1998).

    Article  CAS  Google Scholar 

  38. Fu, L., Minden, M.D. & Benchimol, S. Translational regulation of human p53 gene expression. EMBO J. 15, 4392–4401 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Antonarakis, F. Negro and J. Schwaller for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Conne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conne, B., Stutz, A. & Vassalli, JD. The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology?. Nat Med 6, 637–641 (2000). https://doi.org/10.1038/76211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/76211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing