Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis

Abstract

Tissue deposition of soluble proteins as amyloid fibrils underlies a range of fatal diseases. The two naturally occurring human lysozyme variants are both amyloidogenic, and are shown here to be unstable. They aggregate to form amyloid fibrils with transformation of the mainly helical native fold, observed in crystal structures, to the amyloid fibril cross-β fold. Biophysical studies suggest that partly folded intermediates are involved in fibrillogenesis, and this may be relevant to amyloidosis generally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pepys, M. B. in Samter's Immunologic Diseases (eds Frank, M. M., Austen, K. F., Claman, H. N. & Unanue, E. R.) 637–655 (Little, Brown and Company, Boston, 1994).

    Google Scholar 

  2. Tan, S. Y. & Pepys, M. B. Amyloidosis. Histopathology 25, 403–414 (1994).

    Article  CAS  Google Scholar 

  3. Glenner, G. G. Amyloid deposits and amyloidosis—the β-fibrilloses. I. N. Engl. J. Med. 302, 1283–1292 (1980).

    Article  CAS  Google Scholar 

  4. Blake, C. C. F. & Serpell, L. C. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure 4, 989–998 (1996).

    Article  CAS  Google Scholar 

  5. Fraser, P. E. et al. Fibril formation by primate, rodent and Dutch-hemorrhagic analogues of Alzheimer β-protein. Biochemistry 31, 10716–10723 (1992).

    Article  CAS  Google Scholar 

  6. Goldfarb, L. G., Brown, P., Haltia, M., Ghiso, J. & Frangione, B. Synthetic peptides corresponding to different mutated regions of the amyloid gene in familial Creutzfeldt-Jakob disease show enhanced in vitro formation of morphologically different amyloid fibrils. Proc. Natl Acad. Sci. USA 90, 4451–4454 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Abrahamson, M. & Grubb, A. Increased body temperature accelerates aggregation of the Leu-68-Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc. Natl Acad. Sci. USA 91, 1416–1420 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Hurle, M. R., Helms, L. R., Li, L., Chan, W. & Wetzel, R. A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc. Natl Acad. Sci. USA 91, 5446–5450 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Maury, C. P. J., Nurmiaho-Lassila, E.-L. & Rossi, H. Amyloid fibril formation in gelsolin-derived amyloidosis. Definition of the amyloidogenic region and evidence of accelerated amyloid formation of mutant Asn-187 and Tyr-187 gelsolin peptides. Lab. Invest. 70, 558–564 (1994).

    CAS  PubMed  Google Scholar 

  10. Yamada, T., Kluve-Beckerman, B., Liepnicks, J. J. & Benson, M. D. Fibril formation from recombinant human serum amyloid A. Biochim. Biophys. Acta 1226, 323–329 (1994).

    Article  CAS  Google Scholar 

  11. McCutchen, S. L., Lai, Z., Miroy, G. J., Kelly, J. W. & Colon, W. Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease. Biochemistry 34, 13527–13536 (1995).

    Article  CAS  Google Scholar 

  12. Lansbury, P. T. Jr et al. Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nature Struct. Biol. 2, 990–998 (1995).

    Article  CAS  Google Scholar 

  13. Kelly, J. W. Alternative conformations of amyloidogenic proteins govern their behaviour. Curr. Opin. Struct. Biol. 6, 11–17 (1996).

    Article  CAS  Google Scholar 

  14. Booth, D. R. et al. Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene. J. Clin. Invest. 98, 2714–2721 (1996).

    Article  Google Scholar 

  15. Pepys, M. B. et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362, 553–557 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Blake, C. C. F. et al. Structure of hen egg-white lysozyme. Nature 206, 757–761 (1965).

    Article  ADS  CAS  Google Scholar 

  17. Blake, C. C., Pulford, W. C. & Artymiuk, P. J. X-ray studies of water in crystals oflysozyme. J. Mol. Biol. 167, 693–723 (1983).

    Article  CAS  Google Scholar 

  18. Artymiuk, P. J. & Blake, C. C. F. Refinement of human lysozyme at 1.5 Å resolution analysis of non-bonded and hydrogen-bond interactions. J. Mol. Biol. 152, 737–762 (1981).

    Article  CAS  Google Scholar 

  19. McKenzie, H. A. & White, F. H. Jr Lysozyme and alpha-lactalbumin: structure, function, and interrelationship. Adv. Protein Chem. 41, 173–315 (1991).

    Article  CAS  Google Scholar 

  20. Radford, S. E., Dobson, C. M. & Evans, P. A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Radford, S. E. & Dobson, C. M. Insights into protein folding using physical techniques: studies of lysozyme and α-lactalbumin. Phil. Trans. R. Soc. Lond. B 348, 17–25 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins Struct. Funct. Genet. 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  23. Ptitsyn, O. B. Molten globule and protein folding. Adv. Protein Chem. 47, 83–229 (1995).

    Article  CAS  Google Scholar 

  24. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Shih, P., Holland, D. R. & Kirsch, J. F. Thermal stability determinants of chicken egg-white lysozyme core mutants: hydrophobicity, packing volume, and conserved buried water molecules. Protein Sci. 4, 2050–2062 (1995).

    Article  CAS  Google Scholar 

  26. Puchtler, H., Sweat, F. & Levine, M. On the binding of Congo red by amyloid. J. Histochem. Cytochem. 10, 355–364 (1995).

    Article  Google Scholar 

  27. Harrison, R. F. et al. ‘Fragile’ liver and massive hepatic haemorrhage due to hereditary amyloidosis. Gut 38, 151–152 (1996).

    Article  CAS  Google Scholar 

  28. Stott, K., Blackburn, J. M., Butler, P. J. & Perutz, M. Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc. Natl Acad. Sci. USA 92, 6509–6513 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Nelson, S. R., Lyon, M., Gallagher, J. T., Johnson, E. A. & Pepys, M. B. Isolation and characterization of the integral glycosaminoglycan constituents of human amyloid A and monoclonal light-chain amyloid fibrils. Biochem. J. 275, 67–73 (1991).

    Article  CAS  Google Scholar 

  30. Haezebrouck, P. et al. An equilibrium partially folded state of human lysozyme at low pH. J. Mol. Biol. 246, 382–387 (1995).

    Article  CAS  Google Scholar 

  31. Wu, L. C., Peng, Z.-y. & Kim, P. S. Bipartite structure of the α-lactalbumin molten globule. Nature Struct. Biol. 2, 281–286 (1995).

    Article  CAS  Google Scholar 

  32. Eyles, S. J., Radford, S. E., Robinson, C. V. & Dobson, C. M. Kinetic consequences of the removal of a disulfide bridge on the folding of hen lysozyme. Biochemistry 33, 13038–13048 (1994).

    Article  CAS  Google Scholar 

  33. Robinson, C. V. et al. Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature 372, 646–651 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Yang, J. J., Pitkeathly, M. & Radford, S. E. Far-UV circular dichroism reveals a conformational switch in a peptide fragment from the beta-sheet of hen lysozyme. Biochemistry 33, 7345–7353 (1994).

    Article  CAS  Google Scholar 

  35. Minor, D. L. Jr & Kim, P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Dobson, C. M. Finding the right fold. Nature Struct. Biol. 2, 513–517 (1995).

    Article  CAS  Google Scholar 

  37. Bychkova, V. E. & Ptitsyn, O. B. Folding intermediates are involved in genetic diseases? FEBS Lett. 359, 6–8 (1995).

    Article  CAS  Google Scholar 

  38. Riek, R. et al. NMR structure of the mouse prion protein domain PrP (121–321). Nature 382, 180–182 (1996).

    Article  ADS  CAS  Google Scholar 

  39. Chung, L. P., Keshav, S. & Gordon, S. Cloning the human lysozyme cDNA: inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells. Proc. Natl Acad. Sci. USA 85, 6227–6231 (1988).

    Article  ADS  CAS  Google Scholar 

  40. Osserman, E. F. & Lawlor, D. P. Serum and urinary lysozymes (muramidase) in monocytic and monomyelocytic leukemia. J. Exp. Med. 124, 921–951 (1996).

    Article  Google Scholar 

  41. Nanjo, F., Sakai, K. & Usui, T. p-nitrophenol pent-N-acetyl-beta-chitopentaoside as a novel synthetic substrate for the colorimetric assay of lysozyme. J. Biochem. 104, 255–258 (1988).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. in Proceedings of the CCP4 Study Weekend (eds Sawyer, L., Isaacs, N. & Bailey, S.) (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  43. CCP4 The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  44. Brünger, A. T. X-PLOR manual version 3.0 (Yale University, New Haven, CT, 1992).

    Google Scholar 

  45. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 74, 110–119 (1991).

    Article  Google Scholar 

  46. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Perry, L. J. & Wetzel, R. Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme. Biochemistry 25, 733–739 (1986).

    Article  CAS  Google Scholar 

  48. Bai, Y., Milne, J. S., Mayne, L. & Englander, S. W. Primary structure effects on peptide group hydrogen exchange. Proteins Struct. Funct. Genet. 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  49. Funahashi, J., Takano, K., Ogasahara, K., Yamagata, Y. & Yutani, K. The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J. Biochem. 120, 1216–1223 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, D., Sunde, M., Bellotti, V. et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793 (1997). https://doi.org/10.1038/385787a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385787a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing