Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression

Abstract

Nutritional deprivation suppresses immune function1,2,3. The cloning of the obese gene and identification of its protein product leptin4 has provided fundamental insight into the hypothalamic regulation of body weight5,6. Circulating levels of this adipocyte-derived hormone are proportional to fat mass6,7 but may be lowered rapidly by fasting8,9 or increased by inflammatory mediators10,11. The impaired T-cell immunity of mice12,13 now known to be defective in leptin (ob/ob)4 or its receptor (db/db)14,15, has never been explained. Impaired cell-mediated immunity1,2,3 and reduced levels of leptin7 are both features of low body weight in humans. Indeed, malnutrition predisposes to death from infectious diseases16. We report here that leptin has a specific effect on T-lymphocyte responses, differentially regulating the proliferation of naive and memory T cells. Leptin increased Th1 and suppressed Th2 cytokine production. Administration of leptin to mice reversed the immunosuppressive effects of acute starvation. Our findings suggest a new role for leptin in linking nutritional status to cognate cellular immune function, and provide a molecular mechanism to account for the immune dysfunction observed in starvation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leptin enhances the alloproliferative response.
Figure 2: The long isoform of the leptin receptor is expressed in CD4+ T cells.
Figure 3: Leptin differentially affects the proliferative responses of naive and memory T cells.
Figure 4: Leptin favours the production of proinflammatory cytokines.
Figure 5: Leptin reverses starvation-induced immunosuppression.

Similar content being viewed by others

References

  1. Chandra, R. K. Nutrition and immunity: Lessons from the past and new insights into the future. Am. J. Clin. Nutr. 53, 1087–1101 (1991).

    Article  CAS  Google Scholar 

  2. Cason, J., Ainley, C. C., Wolstencroft, R. A., Norton, K. R. & Thompson, R. P. Cell-mediated immunity in anorexia nervosa. Clin. Exp. Immunol. 64, 370–375 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Polack, E. et al. Low lymphocyte interferon-gamma production and variable proliferative response in anorexia nervosa patients. J. Clin. Immunol. 13, 445–451 (1993).

    Article  CAS  Google Scholar 

  4. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372 425–432 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Friedman, J. M. Leptin, leptin receptors and the control of body weight. Eur. J. Med. Res. 2, 7–13 (1997).

    CAS  PubMed  Google Scholar 

  7. Grinspoon, S. et al. Serum leptin levels in women with anorexia nervosa. J. Clin. Endocrinol. Metab. 81, 3861–3863 (1996).

    CAS  PubMed  Google Scholar 

  8. Boden, G., Chen, X., Mozzoli, M. & Ryan, I. Effect of fasting on serum leptin in normal human subjects. J. Clin. Endocrinol. Metab. 81, 3419–3423 (1996).

    CAS  PubMed  Google Scholar 

  9. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Janik, J. e. et al. Interleukin 1 alpha increases serum leptin concentrations in humans. J. Clin. Endocrinol. Metab. 82, 3084–3086 (1997).

    CAS  PubMed  Google Scholar 

  11. Sarraf, P. et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J. Exp. Med. 185, 171–175 (1997).

    Article  CAS  Google Scholar 

  12. Fernandes, G., Handwerger, B. S., Yunis, E. J. & Brown, D. M. Immune response in the mutant diabetic C57BL/Ks-db+ mouse. Discrepancies between in vitro and in vivo immunological assays. J. Clin. Invest. 61, 243–250 (1978).

    Article  CAS  Google Scholar 

  13. Chandra, R. K. Cell-mediated immunity in genetically obese (C57BL/6J ob/ob) mice. Am. J. Clin. Nutr. 33, 13–16 (1980).

    Article  CAS  Google Scholar 

  14. Ghilardi, N. et al. Defective STAT signalling by the leptin receptor in diabetic mice. Proc. Natl Acad. Sci. USA 93, 6231–6235 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Shears, P. Epidemiology and infection in famine and disasters. Epidemiol. Infect. 107, 241–251 (1991).

    Article  CAS  Google Scholar 

  17. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  Google Scholar 

  18. Gotoda, T. et al. Leptin receptor gene variation and obesity: lack of association in a white British male population. Hum. Mol. Genet. 6, 869–876 (1997).

    Article  CAS  Google Scholar 

  19. Lombardi, G. et al. Are primary alloresponses truly primary? Int. Immunol. 2, 9–13 (1990).

    Article  CAS  Google Scholar 

  20. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15, 749–795 (1997).

    Article  CAS  Google Scholar 

  22. Semnani, R. T., Nutman, T. B., Hochman, P., Shaw, S. & van Seventer, G. A. Costimulation by purified intercellular adhesion molecule 1 and lymphocyte function-associated antigen 3 induces distinct proliferation, cytokine and cell surface antigen profiles in human “naive” and “memory” CD4+ T cells. J. Exp. Med. 180, 2125–2135 (1994).

    Article  CAS  Google Scholar 

  23. Besedovsky, H. O. & del Rey, A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev. 17, 64–102 (1996).

    Article  CAS  Google Scholar 

  24. Young, J. L., Ramage, J. M., Hill-Gaston, J. S. & Beverley, P. C. L. In vitro responses of human CD45RObright and CD45RAbright T cell subsets and their relationship to memory and naive T cells. Eur. J. Immunol. 27, 2383–2389 (1997).

    Article  CAS  Google Scholar 

  25. Laufer, T. M., DeKoning, J., Markowitz, J. S., Lo, D. & Glimcher, L. H. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383, 81–85 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Staite, N. D., Justen, J. M., Sly, L. M., Beaudet, A. L. & Bullard, D. C. Inhibition of delayed-type contact hypersensitivity in mice deficient in both E-selectin and P-selectin. Blood 88, 2973–2979 (1996).

    CAS  PubMed  Google Scholar 

  27. Beak, S. A. et al. Glucagon-like peptide-1 (GLP-1) releases thyrotropin (TSH): characterization of binding sites for GLP-1 on alpha-TSH cells. Endocrinology 137, 4130–4138 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Campagnoli, J. G. Chai, A. Di Giacomo, J. Gardiner, G. Lombardi, A.Macrae and L.-Q. Gao for technical assistance and for helpful suggestions and D. Gray, H. Reiser and D. Smith for critically reviewing the manuscript. G.M.L., J.K.H. and R.J.B. are MRC Clinical Training Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert I. Lechler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lord, G., Matarese, G., Howard, J. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998). https://doi.org/10.1038/29795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29795

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing