Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Restoration of sensitivity of cultured hepatoma cells to cyclic nucleotides shows permissive effect of dexamethasone

Abstract

CULTURED rat hepatoma cell lines H-35, HTC and RLC respond to glucocorticoid hormones and have revealed details of how these steroids regulate the activity of tyrosine aminotransferase (TAT) that could not have been learned using intact liver1–4. Unfortunately, the apparent lack of other regulatory mechanisms normally present in liver often limits the usefulness of these lines. For. example, although cyclic AMP or its dibutyryl derivative reproducibly cause a several-fold induction of TAT in adult5 and foetal rat liver6 and in the H-35 (refs 7 and 8) and RLC9 hepatoma cell lines, these compounds have generally been found to be ineffective inducers of HTC cell tyrosine aminotransferase8–10. Taken with the demonstration that HTC cells have marginally detectable levels of adenylate cyclase and cyclic AMP, this insensitivity to cyclic nucleotides led to the suggestion that glucocorticoid induction does not depend on cyclic AMP10. The following evidence suggests that the converse may not be true: TAT induction by dibutyryl cyclic AMP (db cyclic AMP) in adult rat liver is reduced by adrenalectomy11; combinations of db cyclic AMP and steroids result in synergistic induction in rat liver and liver organ culture5; and cortisol increases the absolute degree of induction of TAT by db cyclic AMP in some responsive hepatoma cell lines8–12. This putative interrelationship could be clarified if a cell line, otherwise unresponsive to cyclic nucleotides, could be made to respond to these agents by adrenal steroid hormones. This report describes such an accomplishment and suggests that HTC cells are a model system for studies of the permissive effects of glucocorticoid hormones.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pitot, H. C., Peraino, C., Morse, P. A., Jr, and Potter, V. R., Natn. Cancer Inst. Monogr., 13, 229–245 (1964).

    CAS  Google Scholar 

  2. Thompson, E. B., Tomkins, G. M., and Curran, J. F., Proc. natn. Acad. Sci. U.S.A., 56, 296–303 (1966).

    Article  ADS  CAS  Google Scholar 

  3. Granner, D. K., Thompson, E. B., and Tomkins, G. M., J. biol. Chem., 245, 1472–1478 (1970).

    CAS  PubMed  Google Scholar 

  4. Tomkins, G. M., et al., Science, 166, 1474–1480 (1969).

    Article  ADS  CAS  Google Scholar 

  5. Wicks, W. D., Kenney, F. T., and Lee, K. L., J. biol. Chem., 244, 6008–6013 (1969).

    CAS  PubMed  Google Scholar 

  6. Wicks, W. D., J. biol. Chem., 246, 217–223 (1971).

    CAS  PubMed  Google Scholar 

  7. Barnett, C. A., and Wicks, W. D., J. biol. Chem., 246, 7201–7206 (1971).

    CAS  PubMed  Google Scholar 

  8. Butcher, F. R., Becker, J. E., and Potter, V. R., Expl Cell Res., 66, 321–328 (1971).

    Article  CAS  Google Scholar 

  9. Granner, D. K., Sellers, L., Lee, A., Butters, C., and Kutina, L., Archs Biochem. Biophys., 169, 601–615 (1975).

    Article  CAS  Google Scholar 

  10. Granner, D. K., Chase, L., Aurbach, G., and Tomkins, G. M., Science, 162, 1018–1020 (1968).

    Article  ADS  CAS  Google Scholar 

  11. Wicks, W. D., Barnett, C. A., and McKibbin, J. B., Fedn Proc., 33, 1105–1111 (1974).

    CAS  Google Scholar 

  12. Stellwagen, R. H., Biochem. biophys. Res. Commun., 47, 1144–1150 (1972).

    Article  CAS  Google Scholar 

  13. Van Rijn, H., Bevers, M. M., Van Wijk, R., and Wicks, W. D., J. Cell Biol., 60, 181–191 (1974).

    Article  CAS  Google Scholar 

  14. Levinson, B., Tomkins, G. M., and Stellwagen, R. H., J. biol. Chem., 246, 6297–6302 (1971).

    CAS  PubMed  Google Scholar 

  15. Ingle, D. J., J. Endocr., 8, xxiii–xxxvii (1952).

    Article  CAS  Google Scholar 

  16. Exton, J. H., et al., J. biol. Chem., 247, 3579–3588 (1972).

    CAS  Google Scholar 

  17. Shaeffer, L. D., Chenoweth, M., and Dunn, A., Biochim. biophys. Acta, 192, 292–303 (1969).

    Article  Google Scholar 

  18. Shafir, E., and Steinberg, D., J. clin. Invest., 39, 310–319 (1960).

    Article  Google Scholar 

  19. Dickson, C., Haslam, S., and Nandi, S., Virology, 62, 242–252 (1974).

    Article  CAS  Google Scholar 

  20. Kletzien, R. F., Pariza, M. W., Becker, J. F., and Potter, V. R., Nature, 256, 46–47 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Armelin, H., Proc. natn. Acad. Sci. U.S.A., 70, 2702–2706 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Gelehrter, T. D., and Tomkins, G. M., Proc. natn. Acad. Sci. U.S.A., 64, 723–730 (1969).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GRANNER, D. Restoration of sensitivity of cultured hepatoma cells to cyclic nucleotides shows permissive effect of dexamethasone. Nature 259, 572–573 (1976). https://doi.org/10.1038/259572a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259572a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing