Skip to main content

Advertisement

Log in

Detection of pain-related molecules in the subchondral bone of osteoarthritic knees

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Knee pain is predominant among osteoarthritis (OA) patients, but the mechanism is poorly understood. We investigated subchondral bone as a source of OA knee pain using immunohistochemistry. Fifteen medial-type OA knees with minimum involvement of the lateral compartment determined by X-ray as well as magnetic resonance imaging that received total knee arthroplasty (TKA) were involved. Each pair of the medial femoral condyle (MFC) and lateral femoral condyle (LFC) was compared obtained at the time of TKA. Osteocartilaginous MFC and LFC specimens were histologically examined and stained with antibodies against cyclooxygenase 1 (Cox-1), cyclooxygenase 2 (Cox-2), substance P, tumor necrosis factor-alpha (TNF-α), and neuron-specific class III beta-tubulin (TUJ1), a pan-neuronal marker. Formation of cystic lesions was more frequently seen in the MFC. The lesions were composed of vascular endothelial cells, osteoclasts, and mononuclear cells and were present in similar proportions between the MFC and the LFC. Four out of 15 MFC specimens were positive for Cox-1, 15 for Cox-2, and 13 for TNF-α. No LFC specimens were positive for any antibodies. Substance P-positive and TUJ1-positive fibers were found in the subchondral area of the MFC, but not in the LFC. Pathological changes in the subchondral bone can be a source of knee pain, which was detectable by the positive immunoreactivity of substance P, Cox-2, TNF-α, and TUJ1, in the subchondral bone of affected compartments. The relatively immediate reduction in pain obtained by TKA might account for the involvement of the subchondral bone in knee pain because most of the affected subchondral plate is excised in TKA (debridement effect of TKA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jinks C, Jordan K, Croft P (2007) Osteoarthritis as a public health problem: the impact of developing knee pain on physical function in adults living in the community: (KNEST 3). Rheumatology (Oxford) 46:877–881

    Article  CAS  Google Scholar 

  2. McKenna MT, Michaud CM, Murray CJ et al (2005) Assessing the burden of disease in the United States using disability-adjusted life years. Am J Prev Med 28:415–423

    Article  PubMed  Google Scholar 

  3. Gronblad M, Korkala O, Liesi P, Karaharju E (1985) Innervation of synovial membrane and meniscus. Acta Orthop Scand 56:484–486

    Article  CAS  PubMed  Google Scholar 

  4. Pinals RS (1996) Mechanisms of joint destruction, pain and disability in osteoarthritis. Drugs 52(Suppl 3):14–20

    Article  CAS  PubMed  Google Scholar 

  5. Fortier LA, Nixon AJ (1997) Distributional changes in substance P nociceptive fiber patterns in naturally osteoarthritic articulations. J Rheumatol 24:524–530

    CAS  PubMed  Google Scholar 

  6. Saito T, Koshino T (2000) Distribution of neuropeptides in synovium of the knee with osteoarthritis. Clin Orthop Relat Res 376:172–182

    Article  PubMed  Google Scholar 

  7. Gronblad M, Liesi P, Korkala O et al (1984) Innervation of human bone periosteum by peptidergic nerves. Anat Rec 209:297–299

    Article  CAS  PubMed  Google Scholar 

  8. Arnoldi CC, Lemperg K, Linderholm H (1975) Intraosseous hypertension and pain in the knee. J Bone Joint Surg Br 57:360–363

    CAS  PubMed  Google Scholar 

  9. Conaghan PG, Felson D, Lohmander S et al (2006) MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthr Cartil 14(Suppl A):A87–A94

    Article  PubMed  Google Scholar 

  10. Dieppe PA, Lohmander LS (2005) Pathogenesis and management of pain in osteoarthritis. Lancet 365:965–973

    Article  CAS  PubMed  Google Scholar 

  11. Nixon AJ, Cummings JF (1994) Substance P immunohistochemical study of the sensory innervation of normal subchondral bone in the equine metacarpophalangeal joint. Am J Vet Res 55:28–33

    CAS  PubMed  Google Scholar 

  12. Suri S, Gill SE, Camin SM et al (2007) Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 66:1423–1428

    Article  PubMed  Google Scholar 

  13. Moriya H, Sasho T, Sano S et al (2004) Arthroscopic posteromedial release for osteoarthritic knees with flexion contracture. Arthroscopy 20:1030–1039

    PubMed  Google Scholar 

  14. Iwasaki J, Sasho T, Nakagawa K et al (2007) Irregularity of medial femoral condyle on MR imaging serves as a possible indicator of objective severity of medial-type osteoarthritic knee—a pilot study. Clin Rheumatol 26:1705–1708

    Article  PubMed  Google Scholar 

  15. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  Google Scholar 

  16. Shibakawa A et al (2005) The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow. Osteoarthr Cartil 13:679–687

    Article  CAS  PubMed  Google Scholar 

  17. Guymer E, Baranyay F, Wluka E et al (2007) A study of the prevalence and associations of subchondral bone marrow lesions in the knees of healthy, middle-aged women. Osteoarthr Cartil 15:1437–1442

    Article  CAS  PubMed  Google Scholar 

  18. Benito MJ et al (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64:1263–1267

    Article  CAS  PubMed  Google Scholar 

  19. McNearney T et al (2004) Excitatory amino acid, TNF-alpha, and chemokine levels in synovial fluids of patients with active arthropathies. Clin Exp Immunol 137:621–627

    Article  CAS  PubMed  Google Scholar 

  20. Dabby D, Dekel S (2002) Synovial knee pain arising from chronic inflammatory disorders of the knee. J Knee Surg 15:53–56

    PubMed  Google Scholar 

  21. Brenner SS et al (2004) Osteoarthritis of the knee—clinical assessments and inflammatory markers. Osteoarthr Cartil 12:469–475

    Article  PubMed  Google Scholar 

  22. Crofford LJ (1997) COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl 49:15–19

    CAS  PubMed  Google Scholar 

  23. Tonussi CR, Ferreira SH (1999) Tumour necrosis factor-alpha mediates carrageenin-induced knee-joint incapacitation and also triggers overt nociception in previously inflamed rat knee-joints. Pain 82:81–87

    Article  CAS  PubMed  Google Scholar 

  24. Wojtys EM et al (1990) Innervation of the human knee joint by substance-P fibers. Arthroscopy 6:254–263

    CAS  PubMed  Google Scholar 

  25. Levine JD, Moskowitz MA, Basbaum AI et al (1985) The contribution of neurogenic inflammation in experimental arthritis. J Immunol 135(2 Suppl):843s–847s

    CAS  PubMed  Google Scholar 

  26. Witonski D, Wagrowska-Danilewicz M (2004) Distribution of substance-P nerve fibers in intact and ruptured human anterior cruciate ligament: a semi-quantitative immunohistochemical assessment. Knee Surg Sports Traumatol Arthrosc 12:497–502

    Article  PubMed  Google Scholar 

  27. Goodman B et al (2005) Temporal effects of a COX-2-selective NSAID on bone ingrowth. J Biomed Mater Res A 72:279–287

    PubMed  Google Scholar 

  28. Geba GP et al (2002) Efficacy of rofecoxib, celecoxib, and acetaminophen in osteoarthritis of the knee: a randomized trial. JAMA 287:64–71

    Article  CAS  PubMed  Google Scholar 

  29. Pulichino AM et al (2006) Prostacyclin antagonism reduces pain and inflammation in rodent models of hyperalgesia and chronic arthritis. J Pharmacol Exp Ther 319:1043–1050

    Article  CAS  PubMed  Google Scholar 

  30. Wang CT et al (2006) High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthr Cartil 14:1237–1247

    Article  PubMed  Google Scholar 

  31. Clark JM (1990) The structure of vascular channels in the subchondral plate. J Anat 171:105–115

    CAS  PubMed  Google Scholar 

  32. Duncan H et al (1987) The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am 69:1212–1220

    CAS  PubMed  Google Scholar 

  33. Kanematsu M, Ikeda K, Yamada Y (1997) Interaction between nitric oxide synthase and cyclooxygenase pathways in osteoblastic MC3T3-E1 cells. J Bone Miner Res 12:1789–1796

    Article  CAS  PubMed  Google Scholar 

  34. Maciel FM, Sarrazin P, Morisset S et al (1997) Induction of cyclooxygenase-2 by parathyroid hormone in human osteoblasts in culture. J Rheumatol 24:2429–2435

    CAS  PubMed  Google Scholar 

  35. Shi Q, Vallancourt F, Cote V et al (2006) Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal. Arthritis Res Ther 8:R159

    Article  PubMed  CAS  Google Scholar 

  36. Wadleigh DJ, Herschman HR (1999) Transcriptional regulation of the cyclooxygenase-2 gene by diverse ligands in murine osteoblasts. Biochem Biophys Res Commun 264:865–870

    Article  CAS  PubMed  Google Scholar 

  37. Brechter AB, Lerner UH (2007) Bradykinin potentiates cytokine-induced prostaglandin biosynthesis in osteoblasts by enhanced expression of cyclooxygenase 2, resulting in increased RANKL expression. Arthritis Rheum 56:910–923

    Article  CAS  PubMed  Google Scholar 

  38. He J, Tomlinson R, Coon D et al (2007) Proinflammatory cytokine expression in cyclooxygenase-2-deficient primary osteoblasts. J Endod 33:1309–1312

    Article  PubMed  Google Scholar 

  39. Raisz LG (2001) Potential impact of selective cyclooxygenase-2 inhibitors on bone metabolism in health and disease. Am J Med 110(Suppl 3A):43S–45S

    Article  CAS  PubMed  Google Scholar 

  40. Goldring MB, Berenbaum F (1999) Human chondrocyte culture models for studying cyclooxygenase expression and prostaglandin regulation of collagen gene expression. Osteoarthr Cartil 7:386–388

    Article  CAS  PubMed  Google Scholar 

  41. Hl T (1997) Transcriptional induction of cyclooxygenase-2 in osteoblasts is involved in interleukin-6-induced osteoclast formation. Endocrinology 138:2372–2379

    Article  Google Scholar 

  42. Hilal G et al (1998) Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 41:891–899

    Article  CAS  PubMed  Google Scholar 

  43. Lajeunesse D, Reboul P (2003) Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol 15:628–633

    Article  PubMed  Google Scholar 

  44. Bollet AJ (2001) Edema of the bone marrow can cause pain in osteoarthritis and other diseases of bone and joints. Ann Intern Med 134:591–593

    CAS  PubMed  Google Scholar 

  45. Phan CM et al (2006) MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol 16:608–618

    Article  PubMed  Google Scholar 

  46. Link TM (2003) Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226:373–381

    Article  PubMed  Google Scholar 

  47. Felson DT et al (2001) The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 134:541–549

    CAS  PubMed  Google Scholar 

  48. Hayes CW et al (2005) Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 237:998–1007

    Article  PubMed  Google Scholar 

  49. Kornaat PR, Bloem JL, Ceulemans RY et al (2006) Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 239:811–817

    Article  PubMed  Google Scholar 

  50. Plenk H et al (1997) Histomorphology and bone morphometry of the bone marrow edema syndrome of the hip. Clin Orthop Relat Res 334:73–84

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Comprehensive Research on Aging and Health, Health and Labor Sciences Research Grants of Japan.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Sasho.

Additional information

Shuhei Ogino and Takahisa Sasho contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogino, S., Sasho, T., Nakagawa, K. et al. Detection of pain-related molecules in the subchondral bone of osteoarthritic knees. Clin Rheumatol 28, 1395–1402 (2009). https://doi.org/10.1007/s10067-009-1258-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-009-1258-0

Keywords

Navigation