Skip to main content
Log in

Identification of oxytetracycline as a chondrogenic compound using a cell-based screening system

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

To effectively treat degenerative joint diseases including osteoarthritis (OA), small chemical compounds need to be developed that can potently induce chondrogenic differentiation without promoting terminal differentiation. For this purpose, we screened natural and synthetic compound libraries using a Col2GFP-ATDC5 system and identified oxytetracycline (Oxy) as a chondrogenic compound. Oxy induced cartilaginous matrix synthesis and mRNA expressions of chondrocyte markers in ATDC5 cells. In addition, Oxy suppressed mineralization and mRNA expressions of terminal chondrocyte differentiation markers in ATDC5 cells, primary chondrocytes, and cultured metatarsal bones. Oxy’s induction of Col2 mRNA expression was decreased by the addition of Noggin and was increased by the addition of BMP2. Furthermore, Oxy increased mRNA expression of Id1, Bmp2, Bmp4, and Bmp6. These data suggest that Oxy induces chondrogenic differentiation in a BMP-dependent manner and suppresses terminal differentiation. Oxy may be useful for treatment of OA and also for regeneration of cartilage tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hollander AP, Pidoux I, Reiner A, Rorabeck C, Bourne R, Poole AR (1995) Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest 96:2859–2869

    Article  CAS  PubMed  Google Scholar 

  2. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  CAS  PubMed  Google Scholar 

  3. Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today 75:200–212

    Article  CAS  PubMed  Google Scholar 

  4. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545

    Article  CAS  PubMed  Google Scholar 

  5. Pullig O, Weseloh G, Gauer S, Swoboda B (2000) Osteopontin is expressed by adult human osteoarthritic chondrocytes: protein and mRNA analysis of normal and osteoarthritic cartilage. Matrix Biol 19:245–255

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97:761–768

    Article  CAS  PubMed  Google Scholar 

  7. Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung UI (2004) The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum 50:3561–3573

    Article  CAS  PubMed  Google Scholar 

  8. Kolettas E, Muir HI, Barrett JC, Hardingham TE (2001) Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor. Rheumatology (Oxford) 40:1146–1156

    Article  CAS  Google Scholar 

  9. Zehentner BK, Dony C, Burtscher H (1999) The transcription factor Sox9 is involved in BMP-2 signaling. J Bone Miner Res 14:1734–1741

    Article  CAS  PubMed  Google Scholar 

  10. Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 278:41227–41236

    Article  CAS  PubMed  Google Scholar 

  11. Church VL, Francis-West P (2002) Wnt signalling during limb development. Int J Dev Biol 46:927–936

    CAS  PubMed  Google Scholar 

  12. Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, McCauley LK, Davidson BL, Roessler BJ (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA 93:5753–5758

    Article  CAS  PubMed  Google Scholar 

  13. Kan A, Ikeda T, Saito T, Yano F, Fukai A, Hojo H, Ogasawara T, Ogata N, Nakamura K, Chung UI, Kawaguchi H (2009) Screening of chondrogenic factors with a real-time fluorescence-monitoring cell line ATDC5–C2ER: identification of sorting nexin 19 as a novel factor. Arthritis Rheum 60:3314–3323

    Article  CAS  PubMed  Google Scholar 

  14. Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, Ogata N, Takato T, Nakamura K, Kawaguchi H, Chung UI (2005) The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem Biophys Res Commun 333:1300–1308

    Article  CAS  PubMed  Google Scholar 

  15. Saito T, Ikeda T, Nakamura K, Chung UI, Kawaguchi H (2007) S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep 8:504–509

    Article  CAS  PubMed  Google Scholar 

  16. Ohba S, Ikeda T, Kugimiya F, Yano F, Lichtler AC, Nakamura K, Takato T, Kawaguchi H, Chung UI (2007) Identification of a potent combination of osteogenic genes for bone regeneration using embryonic stem (ES) cell-based sensor. FASEB J 21:1777–1787

    Article  CAS  PubMed  Google Scholar 

  17. Hojo H, Igawa K, Ohba S, Yano F, Nakajima K, Komiyama Y, Ikeda T, Lichtler AC, Woo JT, Yonezawa T, Takato T, Chung UI (2008) Development of high-throughput screening system for osteogenic drugs using a cell-based sensor. Biochem Biophys Res Commun 376:375–379

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Hinoi E, Takemori A, Nakamichi N, Yoneda Y (2006) Glutamate inhibits chondral mineralization through apoptotic cell death mediated by retrograde operation of the cystine/glutamate antiporter. J Biol Chem 281:24553–24565

    Article  CAS  PubMed  Google Scholar 

  19. Ohba S, Kawaguchi H, Kugimiya F, Ogasawara T, Kawamura N, Saito T, Ikeda T, Fujii K, Miyajima T, Kuramochi A, Miyashita T, Oda H, Nakamura K, Takato T, Chung UI (2008) Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev Cell 14:689–699

    Article  CAS  PubMed  Google Scholar 

  20. Yu LP Jr, Smith GN Jr, Hasty KA, Brandt KD (1991) Doxycycline inhibits type XI collagenolytic activity of extracts from human osteoarthritic cartilage and of gelatinase. J Rheumatol 18:1450–1452

    PubMed  Google Scholar 

  21. Nganvongpanit K, Pothacharoen P, Suwankong N, Ong-Chai S, Kongtawelert P (2009) The effect of doxycycline on canine hip osteoarthritis: design of a 6-months clinical trial. J Vet Sci 10(3):239–247

    Article  PubMed  Google Scholar 

  22. Yu LP Jr, Smith GN Jr, Brandt KD, Myers SL, O’Connor BL, Brandt DA (1992) Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. Arthritis Rheum 35:1150–1159

    Article  PubMed  Google Scholar 

  23. Smith GN Jr, Yu LP Jr, Brandt KD, Capello WN (1998) Oral administration of doxycycline reduces collagenase and gelatinase activities in extracts of human osteoarthritic cartilage. J Rheumatol 25:532–535

    CAS  PubMed  Google Scholar 

  24. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci USA 102:5062–5067

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM (2005) BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA 102:18023–18027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. K. Miyazono, T. Katagiri, J. Y. Choi, A. Hecht, and H. Sasaki for their kind distribution of experimental materials, as well as Astellas Pharma, Inc., for providing rhBMP2. H. Hojo was supported by Research Fellowships from the Japan Society for the Promotion of Science for Young Scientists. This work was supported by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (nos. 19390509 and 20390509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hironori Hojo or Ung-il Chung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Supplementary material 2 (DOC 40 kb)

About this article

Cite this article

Hojo, H., Yano, F., Ohba, S. et al. Identification of oxytetracycline as a chondrogenic compound using a cell-based screening system. J Bone Miner Metab 28, 627–633 (2010). https://doi.org/10.1007/s00774-010-0179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0179-y

Keywords

Navigation