Skip to main content

Advertisement

Log in

Gene expression during chemically induced liver fibrosis: effect of halofuginone on TGF-β signaling

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hepatic fibrosis is associated with the activation of stellate cells (HSCs), the major source of extracellular matrix (ECM) proteins. Transforming growth factor-β (TGF-β), signaling via Smad3, is the most profibrogenic cytokine and the major promoter of ECM synthesis. Halofuginone, an inhibitor of liver fibrosis, inhibits TGF-β-dependent Smad3 phosphorylation in human HSCs in culture. We have used transcriptional profiling to evaluate the effect of halofuginone on gene expression during the progression of thioacetamide (TAA)-induced liver fibrosis in the rat and have focused on genes that are associated with TGF-β. TAA treatment causes alterations in the expression of 7% of liver genes. Halofuginone treatment prevents the changes in the expression of 41% of these genes and results in the inhibition of HSC activation and collagen synthesis. During the early stages of the disease, halofuginone affects genes involved in alcohol, lipid, protein, and phosphate metabolism and cell adhesion and, at later stages, in the cell cycle (cell development, differentiation, cell proliferation, and apoptosis). The activation of TGF-β-dependent genes, such as tartrate-resistant acid phosphatase, its putative substrate osteopontin, stellate cell activation-association protein, and fibrillin-1, during chemically induced fibrosis is prevented by halofuginone. This study thus highlights the role of TGF-β signaling in liver fibrosis and especially its potential for pharmacological intervention. Halofuginone, which has demonstrated efficacy and tolerance in animals and humans, could become an effective and novel therapy for liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  PubMed  CAS  Google Scholar 

  • Bostrom K, Zebboudj AF, Yao Y, Lin TS, Torres A (2004) Matrix GLA protein stimulates VEGF expression through increased transforming growth factor-beta1 activity in endothelial cells. J Biol Chem 279:52904–52913

    Article  PubMed  CAS  Google Scholar 

  • Bruck R, Genina O, Aeed H, Alexiev R, Nagler A, Pines M (2001) Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology 33:379–386

    Article  PubMed  CAS  Google Scholar 

  • Costamagna E, Garcia B, Santisteban P (2004) The functional interaction between the paired domain transcription factor Pax8 and Smad3 is involved in transforming growth factor-beta repression of the sodium/iodide symporter gene. J Biol Chem 279:3439–3446

    Article  PubMed  CAS  Google Scholar 

  • Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Peter Ten Dijke P, Axel M, Gressner AM (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125:178–191

    Article  PubMed  CAS  Google Scholar 

  • Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85:47–64

    Article  PubMed  CAS  Google Scholar 

  • Gnainsky Y, Spira G, Paizi M, Bruck R, Nagler A, Naffer Abu-Amar S, Geiger B, Genina O, Monsonego-Ornan E, Pines M (2003) Halofuginone—an inhibitor of collagen synthesis by rat stellate cells—stimulates insulin-like growth factor-binding protein 1 synthesis by hepatocytes. J Hepatol 40:269–277

    Article  CAS  Google Scholar 

  • Gnainsky Y, Spira G, Paizi M, Bruck R, Nagler A, Genina O, Taub R, Halevy O, Pines M (2006) The involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis–effect of halofuginone. Cell Tissue Res 324:385–394

    Article  PubMed  CAS  Google Scholar 

  • Inagaki Y, Mamura M, Kanamaru Y, Greenwel P, Nemoto T, Takehara K, Dijke P ten, Nakao A (2001) Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol 187:117–123

    Article  PubMed  CAS  Google Scholar 

  • Iredale JP (2001) Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis 21:427–436

    Article  PubMed  CAS  Google Scholar 

  • Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K (2001) Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem 276:25318–25323

    Article  PubMed  CAS  Google Scholar 

  • Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:1–151

    Google Scholar 

  • Koseki T, Gao Y, Okahashi N, Murase Y, Tsujisawa T, Sato T, Yamato K, Nishihara T (2002) Role of TGF-beta family in osteoclastogenesis induced by RANKL. Cell Signal 14:31–36

    Article  PubMed  CAS  Google Scholar 

  • Kristensen DB, Kawada N, Imamura K, Miyamoto Y, Tateno C, Seki S, Kuroki T, Yoshizato K (2000) Proteome analysis of rat hepatic stellate cells. Hepatology 32:268–277

    Article  PubMed  CAS  Google Scholar 

  • Lang P, Andersson G (2005) Differential expression of monomeric and proteolytically processed forms of tartrate-resistant acid phosphatase in rat tissues. Cell Mol Life Sci 62:905–918

    Article  PubMed  CAS  Google Scholar 

  • Lareu MV, Alvarez-Prechous A, Pardinas C, Concheiro L, Carracedo A (1992) Genetic markers in alcoholic liver cirrhosis. Hum Hered 42:235–241

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Seo GS, Park YN, Yoo TM, Sohn DH (2004) Effects and regulation of osteopontin in rat hepatic stellate cells. Biochem Pharmacol 68:2367–2378

    Article  PubMed  CAS  Google Scholar 

  • Lorena D, Darby IA, Reinhardt DP, Sapin V, Rosenbaum J, Desmouliere A (2004) Fibrillin-1 expression in normal and fibrotic rat liver and in cultured hepatic fibroblastic cells: modulation by mechanical stress and role in cell adhesion. Lab Invest 84:203–212

    Article  PubMed  CAS  Google Scholar 

  • McGaha TL, Kodera T, Spiera H, Stan AC, Pines M, Bona CA (2002a) Halofuginone inhibition of COL1A2 promoter activity via a c-Jun-dependent mechanism. Arthritis Rheum 46:2748–2761

    Article  PubMed  CAS  Google Scholar 

  • McGaha TL, Phelps RG, Spiera H, Bona C (2002b) Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol 118:461–470

    Article  PubMed  CAS  Google Scholar 

  • Nagler A, Pines M (1999) Topical treatment of cutaneous chronic graft versus host disease (cGvHD) with halofuginone: a novel inhibitor of collagen type I synthesis. Transplantation 68:1806–1809

    Article  PubMed  CAS  Google Scholar 

  • Nagler A, Ohana M, Shibolet O, Shapira MY, Alper R, Vlodavsky I, Pines M, Ilan Y (2004) Suppression of hepatocellular carcinoma growth in mice by the alkaloid coccidiostat halofuginone. Eur J Cancer 40:1397–1403

    Article  PubMed  CAS  Google Scholar 

  • Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim DH, Nakajima Y, Seki S, Kawada N, Yoshizato K (2004) Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Invest 84:91–101

    Article  PubMed  CAS  Google Scholar 

  • Pines M, Knopov V, Genina O, Lavelin I, Nagler A (1997a) Halofuginone, a specific inhibitor of collagen type I synthesis, prevents dimethylnitrosamine-induced liver cirrhosis. J Hepatol 27:391–398

    Article  PubMed  CAS  Google Scholar 

  • Pines M, Vlodavsky I, Nagler A (1997b) Halofuginone—a novel anti-fibrotic therapy. Gen Pharmacol 30:445–450

    Article  Google Scholar 

  • Pines M, Vlodavsky I, Nagler A (2000) Halofuginone: from veterinary use to human therapy. Drug Dev Res 50:371–378

    Article  CAS  Google Scholar 

  • Pines M, Domb A, Ohana M, Inbar J, Genina O, Alexiev R, Nagler A (2001) Reduction in dermal fibrosis in the tight-skin (Tsk) mouse after local application of halofuginone. Biochem Pharmacol 62:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Pines M, Snyder D, Yarkoni S, Nagler A (2003) Halofuginone to treat fibrosis in chronic graft versus host disease and scleroderma. Biol Blood Marrow Transplant 9:417–425

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Russo A, Felici A, Flanders KC (2003) Smad3: a key player in pathogenetic mechanisms dependent on TGF-β. Ann N Y Acad Sci 995:1–10

    Article  PubMed  CAS  Google Scholar 

  • Rockey DC (2005) Antifibrotic therapy in chronic liver disease. Clin Gastroenterol Hepatol 3:95–107

    Article  PubMed  CAS  Google Scholar 

  • Ruel M, Bianchi C, Khan TA, Xu S, Liddicoat JR, Voisine P, Araujo E, Lyon H, Kohane IS, Libermann TA, Sellke FW (2003) Gene expression profile after cardiopulmonary bypass and cardioplegic arrest. J Thorac Cardiovasc Surg 126:1521–1530

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, Nevo E, Saaler-Reinhardt S, Reuss S, Hankeln T, Burmester T (2004) Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem 279:8063–8069

    Article  PubMed  CAS  Google Scholar 

  • Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA (2001) The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 34:89–100

    Article  PubMed  CAS  Google Scholar 

  • Schuppan D, Ruehl M, Somasundaram R, Hahn EG (2001) Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 21:351–372

    Article  PubMed  CAS  Google Scholar 

  • Shalitin N, Schlesinger H, Levy MJ, Kessler E, Kessler-Icekson G (2003) Expression of procollagen C-proteinase enhancer in cultured rat heart fibroblasts: evidence for co-regulation with type I collagen. J Cell Biochem 90:397–407

    Article  PubMed  CAS  Google Scholar 

  • Sharan R, Maron-Katz A, Shamir R (2003) Click and expander: a system for clustering and visualizing gene expression data. Bioinformatics 19:1787–1799

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Bai S, Li L, Cao X (2001) Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription. J Biol Chem 276:850–855

    Article  PubMed  CAS  Google Scholar 

  • Shi YY, Wang HC, Yin YH, Sun WS, Li Y, Zhang CQ, Wang Y, Wang S, Chen WF (2005) Identification and analysis of tumour-associated antigens in hepatocellular carcinoma. Br J Cancer 92:929–934

    Article  PubMed  CAS  Google Scholar 

  • Spira G, Mawasi N, Paizi M, Anbinder N, Genina O, Alexiev R, Pines M (2002) Halofuginone, a collagen type I inhibitor improves liver regeneration in cirrhotic rats. J Hepatol 37:331–339

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Swenson ES, Gaca MD, Giordano FJ, Reiss M, Wells RG (2005) Smad2 and Smad3 play different roles in rat hepatic stellate cell function and {alpha}-smooth muscle actin organization. Mol Biol Cell 16:4214–4224

    Article  PubMed  CAS  Google Scholar 

  • Van de Casteele M, Roskams T, Van der Elst I, Pelt JF van, Fevery J, Nevens F (2004) Halofuginone can worsen liver fibrosis in bile duct obstructed rats. Liver Int 24:502–509

    Article  PubMed  CAS  Google Scholar 

  • Xavier S, Piek E, Fujii M, Javelaud D, Mauviel A, Flanders KC, Samuni AM, Felici A, Reiss M, Yarkoni S, Sowers A, Mitchell JB, Roberts AB, Russo A (2004) Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 279:15167–15176

    Article  PubMed  CAS  Google Scholar 

  • Yee KO, Connolly CM, Pines M, Lawler J (2006) Halofuginone inhibits tumor growth in the polyoma middle T antigen mouse via a thrombospondin-1 independent mechanism. Cancer Biol Ther 5:218–224

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pines.

Additional information

This study was supported by the Israel Science Foundation (ISF; 537/01), Canadian Institutes of Health Research (MOP-68836), and NIH grants U01 DK58739 and R21 CA108303 and is a contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel (no. 481/05).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnainsky, Y., Kushnirsky, Z., Bilu, G. et al. Gene expression during chemically induced liver fibrosis: effect of halofuginone on TGF-β signaling. Cell Tissue Res 328, 153–166 (2007). https://doi.org/10.1007/s00441-006-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0330-1

Keywords

Navigation