Skip to main content
Log in

Potential clinical relevance of digital radiogrammetry for quantification of periarticular bone demineralization in patients suffering from rheumatoid arthritis depending on severity and compared with DXA

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate a new bone densitometric technology based on digital radiogrammetry (DXR) with respect to its ability to measure severity-dependent variations of bone mineralization in patients with rheumatoid arthritis. One hundred six randomly selected patients suffering from verified rheumatoid arthritis underwent digitally performed plain radiographs of the non-dominant hand and measurements of dual-energy X-ray absorptiometry (DXA) regarding total femur and lumbar spine. Using DXR the radiographs were analyzed retrospectively for bone mineral density (BMD) calculation. The severity was classified using Larsen score and Steinbroker stage blinded by two radiologists. A third radiologist reviewed the incongruently scored cases. Mean values of calculated parameters changed as follows from Larsen 1 to Larsen 5: Bone mineral density (DXR–BMD) decreased from 0.55 to 0.44 g/cm2 (p=0.000), DXR–MCI decreased from 0.44 to 0.33 (p=0.001), DXA–BMD (total femur) decreased from 0.92 to 0.78 g/cm2 (p=0.090) and DXA–BMD (lumbar spine) decreased from 0.91 to 0.84 g/cm2 (p=0.595). Similar results were verified for the Steinbroker stage. The relative decrease of BMD measured by DXR between the highest and lowest score was 20% for Steinbroker stage and Larsen score (p<0.05). The relative decrease of BMD using DXA revealed not such a significant result. Similar results were verified for metacarpal index (estimated by DXR). Correlations between BMD determined by DXR and by DXA were all significant (R=0.45 for lumbar spine and R=0.59 for total femur). Consequently, less than 35% of the DXR–BMD value is explainable by corresponding DXA values. The DXR-based BMD calculation seems to be able to distinguish severity and progress of the disease in contrast to those of DXA at lumbar spine and total femur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Miehle W (1999) Rheumatoide arthritis. Thieme, Stuttgart, pp 1–9

  2. Larsen A, Thoen J (1987) Hand radiography of 200 patients with rheumatoid arthritis repeated after an interval of one year. Scand J Rheumatol 16:395–401

    CAS  PubMed  Google Scholar 

  3. Cortet B, Flipo RM, Duquesnoy B, Delcambre B (1995) Bone tissue in rheumatoid arthritis. Bone mineral density and fracture risk. Rev Rhum Engl Ed 62:197–204

    CAS  PubMed  Google Scholar 

  4. Rosholm A, Hylsdrup L, Baeksgaard L, Grunkin M, Thodberg HH (2001) Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int 12:961–969

    Article  CAS  PubMed  Google Scholar 

  5. Baran DT, Faulkner KG, Genant HK, Miller PD, Pacifici R (1997) Diagnosis and management of osteoporosis: guidelines for the utilization of bone densitometry. Calcif Tissue Int 61:433–440

    Article  CAS  PubMed  Google Scholar 

  6. Wassenberg S (2000) Methoden zur messung röntgenologischer veränderungen. In: Rau R (ed) Basistherapie der rheumatoiden arthritis. Uni-Med Verlag, Bremen, pp 102–111

  7. Barnett E, Nordin B (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11:166–174

    CAS  Google Scholar 

  8. Virtama P, Mahonen H (1960) Thickness of the cortical layer as an estimate of mineral content of human finger bones. Br J Radiol 6:60–62

    Google Scholar 

  9. Wishart JM, Horowitz M, Bochner M, Need AG, Nordin B (1993) Relationship between metacarpal morphometry, forearm and vertebral bone density and fractures in postmenopausal women. Br J Radiol 66:435–440

    CAS  PubMed  Google Scholar 

  10. Mau W, Zink A (2000) Epidemiologie. In: Rau R (ed) Basistherapie der rheumatoiden arthritis. Uni-Med Verlag, Bremen, pp 24–29

  11. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fies FJ, Cooper NS (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    CAS  PubMed  Google Scholar 

  12. Derisquebourg T, Dubois P, Devogelaer JP et al. (1994) Automated computerized radiogrammetry of the second metacarpal and its correlation with absorptiometry of forearm and spine. Calcif Tissue Int 54:461–465

    CAS  PubMed  Google Scholar 

  13. Maggio D, Pacifici R, Cherubini A et al. (1997) Age-related cortical bone loss at the metacarpal. Calcif Tissue Int 60:94–97

    Article  CAS  PubMed  Google Scholar 

  14. Martini F, Tröndle S, Sell S, Mayer F, Willms R, Teschner M (1999) Einfluss der arthrose, osteoporose und chronischen polyarthritis auf die präzision der osteodensitometrischen messungen an der lendenwirbelsäule und am ward’schen dreieck. Z Rheumatol 58:283–288

    Article  CAS  PubMed  Google Scholar 

  15. Cameron EC, Boyd RM, Luk D, McIntosh HW, Walker VR (1997) Cortical thickness measurements and photon absorptiometry for determination of bone quantity. CMAJ 116:145–147

    Google Scholar 

  16. Bell KL, Loveridge N, Power J et al. (1999) Structure of the total femur in hip fracture: cortical bone loss in the inferioanterior to superioposterior axis. JBMR 14:111–119

    CAS  Google Scholar 

  17. Lazenby RA (1997) Bias and agreement for radiogrammetric estimates of cortical bone geometry. Invest Radiol 32:12–18

    Article  CAS  PubMed  Google Scholar 

  18. Meema HE, Meindok H (1992) Advantages of peripheral radiogrammetry over dual-photon absorptiometry of the spine in the assessment of prevalence of osteoporotic vertebral fractures in women. JBMR 7:897–903

    CAS  Google Scholar 

  19. Bloom RA (1980) A comparative estimation of the combined cortical thickness of various bone sites. Skeletal Radiol 5:167–170

    CAS  PubMed  Google Scholar 

  20. Black DM, Palermo L, Sorensen T et al. (2001) A normative reference database study for the Pronosco X-posure radiogrammetry system. J Clin Densitom 4:5–12

    CAS  PubMed  Google Scholar 

  21. EXPO/DK-04 (2000) A clinical study to establish a normative reference database for the Pronosco X-posure system for Scandinavian caucasian women. Clinical Report, version 2

  22. Wüster C, Wenzler M, Kappes J, Rehm C, Gühring T, Arnbjerg C (2000) Digital X-ray radiogrammetry as a clinical method for estimating bone mineral density: a German reference database. JBMR 15:298

    Google Scholar 

  23. Maffei L; Venarotti H, Treviso J, Sorensen TK, Nissen D (2000) Digital X-ray radiogrammetry: a Hispanic normative reference database for the Pronosco X-posure system. JBMR 15:304–305

    Google Scholar 

  24. Yan J, Li M, Zhonhou L (2000) Normal values of forearm bone BMD and incidence of primary osteoporosis in Chinese women. Chin J Osteoporosis 6:30–32

    Google Scholar 

  25. Thodberg HH, Jensen JK, Rosholm A (1999) BMD from digital X-ray radiogrammetry: sensitivity to details of the image capture. Presented at ASBMR 21st annual meeting, St. Louis, Missouri. JBMR 14:369

    Google Scholar 

  26. EXPO/TECH-016 (2000) Reproducibility study for X-posure V.2 conventional image capture: technical report, version 2

    Google Scholar 

  27. Mazess RB (1987) Bone density in diagnosis of osteoporosis: thresholds and breakpoints. Calcif Tissue Int 41:117–118

    Google Scholar 

  28. Boonen S, Cheng X, Nicholson PH, Verbeke G, Broos P, Dequeker J (1997) The accuracy of peripheral skeletal assessment at the radius in estimating femoral bone density as measured by dual-energy X-ray absorptiometry: a comparative study of single-photon absorptiometry and computed tomography. J Intern Med 242:323–328

    CAS  PubMed  Google Scholar 

  29. Heilmann P, Wuster C, Prolingheuer C, Gotz M, Ziegler R (1998) Measurement of forearm bone mineral density: comparison of five different instruments. Calcif Tissue Int 62:383–387

    Article  CAS  PubMed  Google Scholar 

  30. Russo CR (1988) Correlation of radial SPA and pQCT with the femoral DEXA measurement in elderly women. J Intern Med 244:358–359

    Article  Google Scholar 

  31. Trivitayaratana W, Trivitayaratana P (2001) Diagnostic agreement of combined radiogrammetric analysis with texture analysis in the evaluation of bone density: a comparison with dual energy X-ray absorptiometry. J Med Assoc Thai 84:599–604

    Google Scholar 

  32. Adami S, Zamberlan N, Gatti D et al. (1996) Computer radiographic absorption and morphometry in the assessment of postmenopausal bone loss. Osteoporos Int 6:8–13

    CAS  PubMed  Google Scholar 

  33. Nordin B (1976) Calcium, phosphate and magnesium metabolism. In: Clinical physiology and diagnostic procedures. Churchill Livingston, Edinburgh London New York, pp 391–397, 512–516, 570–572

  34. Jorgensen JT, Andersen PB, Rosholm A, Bjarnason NH (2000) Digital X-ray radiogrammetry: a new appendicular bone densitometric method with high precision. Clin Physiol 20:330–335

    Article  CAS  PubMed  Google Scholar 

  35. Baadegaard N, Linde R, Wendt O, Rosholm A (2001) Digital X-ray radiogrammetry on hand X-rays. Bone 28:176

    Google Scholar 

  36. Enokida M, Yamasaki D, Okano T, Hagino H, Morio Y, Teshima R (2001) Bone mass changes of tibia and vertebral bones in young and adult rats with collagen-induced arthritis. Bone 28:87–93

    Article  CAS  PubMed  Google Scholar 

  37. Dequeker J (1976) Quantitative radiology: radiogrammetry of cortical bone. Br J Radiol 49:912–920

    CAS  PubMed  Google Scholar 

  38. Ozgocmen S, Karaoglan B, Kocako E (1999) Correlation of hand bone mineral density with the metacarpal cortical index and carpometacarpal ratio in patients with rheumatoid arthritis. Yonsei Med J 23:478–482

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Böttcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, J., Malich, A., Pfeil, A. et al. Potential clinical relevance of digital radiogrammetry for quantification of periarticular bone demineralization in patients suffering from rheumatoid arthritis depending on severity and compared with DXA. Eur Radiol 14, 631–637 (2004). https://doi.org/10.1007/s00330-003-2087-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-2087-1

Keywords

Navigation