Skip to main content
Log in

Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction

Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Interest has recently focused on the use of neurohormonal markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) as indices of left ventricular systolic dysfunction and prognosis in heart failure. Also, peptides belonging to the interleukin-6 (IL-6) family have been shown to induce ANP and BNP secretion. We hypothesized that BNP and ANP spillover in the peripheral circulation reflects left ventricular dysfunction and IL-6 production in septic shock.

Design and setting

Retrospective, clinical study in the medical intensive care unit of a university hospital.

Patients and participants

17 patients with septic shock and 19 control subjects.

Interventions

Collection of clinical and demographic data in relation to ANP, BNP, IL-6, and soluble TNF receptors (sTNF-R-p55, sTNF-R-p75) in plasma over a period of 4 days.

Measurements and results

In septic shock we found a significant increase in ANP (82.7±9.9 vs. 14.9±1.2 pg/ml) and BNP (12.4±3.6 vs. 5.5±0.7 pg/ml). Plasma ANP peaked together with IL-6. Peaks of ANP and IL-6 were significantly correlated (r=0.73; p<0.01). BNP was inversely correlated to cardiac index (r=–0.56; p<0.05).

Conclusions

ANP and BNP increase significantly in patients with septic shock. BNP reflects left ventricular dysfunction. ANP is related to IL-6 production rather than to cardiovascular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1. a
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Nakao K, Ogawa Y, Suga S, Imura H (1992) Molecular biology and biochemistry of the natriuretic system. I. Natriuretic peptides. J Hypertens 10:907–912

    CAS  PubMed  Google Scholar 

  2. Bold AJ de (1985) Atrial natriuretic factor: a hormone produced by the heart. Science 230:767–770

    PubMed  Google Scholar 

  3. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81

    Article  CAS  PubMed  Google Scholar 

  4. Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90:195–203

    CAS  PubMed  Google Scholar 

  5. Mukoyama M, Nakao K, Saito Y, Ogawa Y, Hosoda K, Suga S, Shirakami G, Jougasaki M, Imura H (1990) Increased human brain natriuretic peptide in congestive heart failure. N Engl J Med 313:757–758

    Google Scholar 

  6. Gottlieb S, Kukin ML, Ahern D, Packer M (1989) Prognostic importance of atrial natriuretic peptide in patients with chronic heart failure. J Am Coll Cardiol 13:153–159

    PubMed  Google Scholar 

  7. Arakawa N, Nakamura M, Aoki H, Hiramori K (1996) Plasma brain natriuretic peptide concentrations predict survival after acute myocardial infarction. J Am Coll Cardiol 27:1656–1661

    Article  CAS  PubMed  Google Scholar 

  8. Hall C, Rouleau JL, Moye L, de Champlain J, Bichet D, Klein M, Sussex B, Packer M, Rouleau J, Arnold MO, Lamas GA, Sestier F, Gottlieb S, Wun CC, Pfeffer MA (1994) N terminal proatrial natriuretic factor. An independent predictor of long term prognosis after myocardial infarction. Circulation 89:1934–1942

    CAS  PubMed  Google Scholar 

  9. Thaik CM, Calderone A, Takahashi N, Colucci WS (1995) Interleukin-1β modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 96:1093–1099

    CAS  PubMed  Google Scholar 

  10. He Q, LaPointe MC (1999) Interleukin-1β regulation of the human brain natriuretic peptide promotor involves Ras-, Rac-, and p38 kinase-dependent pathways in cardiac myocytes. Hypertension 33:283–289

    CAS  PubMed  Google Scholar 

  11. Kuwahara K, Saito Y, Harada M, Ishikawa M, Ogawa E, Miyamoto Y, Hamanaka I, Kamitani S, Kajiyama N, Takahashi N, Nakagawa O, Masuda I, Nakao K (1999) Involvement of cardiotrophin-1 in cardiac myocyte-nonmyocyte interactions during hypertrophy of rat cardiac myocytes in vitro. Circulation 100:1116–1124

    CAS  PubMed  Google Scholar 

  12. MacGowan GA, Mann DL, Kormos RL, Feldman AM, Murali S (1997) Circulating interleukin-6 in severe heart failure. Am J Cardiol 79:1128–1131

    Article  CAS  PubMed  Google Scholar 

  13. Talwar S, Downie PF, Squire IB (1999) An immunolumino-metric assay for cardiotrophin-1: a newly identified cytokine is present in normal human plasma and is increased in heart failure. Biochem Biophys Res Commun 261:567–571

    Article  CAS  PubMed  Google Scholar 

  14. Tsutamoto T, Hisanga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabushi N, Sawaki M, Kinoshita M (1998) Interleukin-6 spillover in the peripheral circulation increase with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398

    CAS  PubMed  Google Scholar 

  15. Talwar S, Squire IB, Downie PF, Davies JE, Ng LL (2000) Plasma N terminal pro-brain natriuretic peptide and cardiotrophin 1 are raised in unstable angina. Heart 84:421–424

    Article  CAS  PubMed  Google Scholar 

  16. Torre-Amione G, Kapadia S, Benedct C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular dysfunction. J Am Coll Cardiol 27:1201–1206

    CAS  PubMed  Google Scholar 

  17. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312

    CAS  PubMed  Google Scholar 

  18. Werdan K (1998) The activated immune system in congestive heart failure-from dropsy to the cytokine paradigm. J Intern Med 243:87–92

    Article  CAS  PubMed  Google Scholar 

  19. Price S, Anning PB, Mitchell JA, Evans TW (1999) Myocardial dysfunction in sepsis: mechanisms and therapeutic implications. Eur Heart J 20:715–724

    Article  CAS  PubMed  Google Scholar 

  20. Müller-Werdan U, Werdan K (1999) Septic cardiomyopathy. Curr Opin Crit Care 5:415–421

    Google Scholar 

  21. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parillo JE (1989) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15:923–929

    Google Scholar 

  22. Pilz G, Fateh-Moghadam S, Viell B, Bujdoso O, Döring G, Marget W, Werdan K (1993) Supplemental immunoglobulin therapy in sepsis and septic shock-comparison of mortality under treatment with polyvalent i.v. immunoglobulin versus placebo: protocol of a multicenter, randomized, prospective, double-blind trial. Theor Surg 8:61–83

    Google Scholar 

  23. Werdan K, Pilz G, and the SBITS Study Group (1998). Polyvalent immune globulins. Shock [Suppl] 7:1918

  24. Bone R (1996) Sir Isaac Newton, sepsis, SIRS and CARS. Crit Care Med 24:1125–1128

    Google Scholar 

  25. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (1992) Definitions for sepsis and multiple organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    PubMed  Google Scholar 

  26. Elebute EA, Stoner HB (1983) The grading of sepsis. Br J Surg 70:29–31

    Google Scholar 

  27. Knaus WA, Draper EA, Wagner DP, Zimmermann JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    CAS  PubMed  Google Scholar 

  28. Gerbes AL, Witthaut R, Gülberg V, Thibault G, Bilzer M, Jüngst D (1992) Role of the liver in splanchnic extraction of atrial natriuretic factor in the rat. Hepatology 16:790–793

    CAS  PubMed  Google Scholar 

  29. Fraunberger P, Pfeiffer M, Cremer P, Holler E, Nagel D, Dehart I, Thein M, Walli AK, Seidel D (1992) Validation of an automated enzyme immunoassay for interleukin-6 for routine clinical use. Clin Chem Lab Med 36:797–801

    Google Scholar 

  30. Baim DS, Grossman W (1996) Cardiac catheterization, angiography, and intervention, 5th edn. Williams & Wilkins, Baltimore

  31. Muders F, Kromer EP, Griese DP, Pfeifer M, Hense HW, Riegger GAJ, Elsner D (1997) Evaluation of plasma natriuretic peptides as markers for left ventricular dysfunction. Am Heart J 134:442–449

    CAS  PubMed  Google Scholar 

  32. Bakker J, Vincent JL (1993) Effects of norepinephrine and dobutamine on oxygen transport and consumption in a dog model of endotoxic shock. Crit Care Med 21:1248–1249

    CAS  PubMed  Google Scholar 

  33. Pilz G, R Appel, P McGinn (1993) Calculation of the left ventricular stroke work index. Crit Care Med 21:1248–1249

    CAS  PubMed  Google Scholar 

  34. Raine AEG, Erne P, Bürgisser E, Müller FB, Bolli P, Burkart F, Bühler FR (1986) Atrial natriuretic peptide and atrial pressure in patients with congestive heart failure. N Engl J Med 315:533–537

    CAS  PubMed  Google Scholar 

  35. Hama N, Ito H, Shirakami G, Nakagawa O, Suga S, Ogawa Y, Masuda I (1995) Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 92:1558–1564

    CAS  PubMed  Google Scholar 

  36. Ogawa T, Linz W, Stevenson M, Bruneau BG, de Bold MLK, Chen JH, Eid H, Schölkens BA, de Bold AJ (1996) Evidence for load dependent and load independent determinants of cardiac natriuretic peptide production. Circulation 93:2059–2067

    CAS  PubMed  Google Scholar 

  37. Edwards BS, Zimmermann RS, Schwab TR, Heublin DM, Burnett JC (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 62:191–195

    CAS  PubMed  Google Scholar 

  38. Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE (1988) Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 93:903–910

    CAS  PubMed  Google Scholar 

  39. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, and Ogawa S (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84:1127–1136

    CAS  PubMed  Google Scholar 

  40. Tsuruda T, Jougaschi M, Boerrigter G, Huntley BK, Chen HH, Dàssoro AB, Lu SC, Sarson AM, Cataliotti A, Burnett JC Jr (2002) Cardiotrophin-1 stimulation of cardiac fibroblast growth. Roles for glycoprotein 130/ leukemia inhibitory factor receptor and the endothelin type A receptor. Circ Res 90:128–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft to R.W. (Wi 1616/1). Patients with septic shock were enrolled in the "Score-Based Immunoglobulin Therapy of Sepsis" study [22, 23]. Mrs. Anke Rasch is gratefully thanked for the preparation of illustrations in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochus Witthaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witthaut, R., Busch, C., Fraunberger, P. et al. Plasma atrial natriuretic peptide and brain natriuretic peptide are increased in septic shock: impact of interleukin-6 and sepsis-associated left ventricular dysfunction. Intensive Care Med 29, 1696–1702 (2003). https://doi.org/10.1007/s00134-003-1910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1910-0

Keywords

Navigation