Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor

Mol Endocrinol. 2002 Aug;16(8):1738-51. doi: 10.1210/me.2001-0345.

Abstract

Liganded and unliganded vitamin D receptors (VDRs) carry out distinct functions; both types of functions require heterodimerization with retinoid X receptors (RXRs). Our recent studies with fluorescent protein chimeras of VDR and RXR, termed GFP-VDR, YFP-RXR, and RXR-BFP, indicated that RXR regulates VDR functions in part by regulating subcellular localization. Here we explored the mechanisms of this regulation. Photobleaching experiments demonstrated that YFP-RXR and both unliganded and liganded GFP-VDR shuttle constantly between nucleus and cytoplasm. To characterize RXR import, we identified a nuclear localization sequence (NLS) in the DNA-binding domain. Mutations in this NLS caused predominant cytoplasmic localization of nlsYFP-RXR and prevented transcriptional activity. The nlsRXR-BFP retained unliganded GFP-VDR in the cytoplasm and reduced baseline transcriptional activity. After calcitriol exposure, however, both GFP-VDR and nlsRXR-BFP entered the nucleus. We characterized receptor export rates and mechanisms using permeabilization experiments. Mutations in the calreticulin binding region slowed both GFP-VDR and YFP-RXR export. Coexpression of RXR-BFP slowed the export of unliganded GFP-VDR, whereas calcitriol treatment tripled the rate of GFP-VDR export. Treatment with leptomycin B, an inhibitor of CRM-1 receptor-mediated export, inhibited export of unliganded GFP-VDR but did not influence export of liganded GFP-VDR or YFP-RXR. Leptomycin B added before calcitriol similarly decreased hormone-induced luciferase activity but was ineffective when added subsequent to calcitriol. These results indicate that the unliganded and liganded VDR interact differently with the import and export receptors and with RXR. Most likely, the regulation of VDR nuclear import by RXR is essential for ligand-independent functions.

MeSH terms

  • Active Transport, Cell Nucleus
  • Amino Acid Sequence
  • Animals
  • Binding Sites / genetics
  • COS Cells
  • Calreticulin / metabolism
  • Fatty Acids, Unsaturated / pharmacology
  • Green Fluorescent Proteins
  • Humans
  • In Vitro Techniques
  • Ligands
  • Luminescent Proteins / genetics
  • Luminescent Proteins / metabolism
  • Molecular Sequence Data
  • Nuclear Localization Signals
  • Receptors, Calcitriol / genetics
  • Receptors, Calcitriol / metabolism*
  • Receptors, Retinoic Acid / chemistry
  • Receptors, Retinoic Acid / genetics
  • Receptors, Retinoic Acid / metabolism*
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Retinoid X Receptors
  • Transcription Factors / chemistry
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Transcription, Genetic

Substances

  • Calreticulin
  • Fatty Acids, Unsaturated
  • Ligands
  • Luminescent Proteins
  • Nuclear Localization Signals
  • Receptors, Calcitriol
  • Receptors, Retinoic Acid
  • Recombinant Fusion Proteins
  • Retinoid X Receptors
  • Transcription Factors
  • Green Fluorescent Proteins
  • leptomycin B