Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sex-specific genetic architecture of human disease

Key Points

  • Nearly all human diseases are sexually dimorphic with respect to prevalence, age of onset, severity or disease course. Sex-specific differences in physiology, behaviour or anatomy might contribute to some of the differences in disease risk, but genetics also plays a part.

  • Gene expression patterns differ between males and females of all species examined, not only for genes on the sex chromosomes, but also for genes on the autosomes.

  • Genes with sex-biased gene expression evolve rapidly at the protein-coding level, whereas differences in gene regulation are often highly conserved.

  • Differences in gene expression between the sexes probably contribute to sexual dimorphism in disease risk and course.

  • Studies of disease-associated quantitative traits in humans suggest that many have a sex-specific genetic architecture, with estimates of heritability differing between males and females.

  • Genotype-by-sex interactions are common in model organisms, indicating that genotype-specific effects differ between males and females. Recent examples of genotype-by-sex interactions on disease risk suggest that such effects might be common in humans as well.

  • Genetic linkage and association studies that do not consider sex-specific genotype effects could miss a significant proportion of genes contributing to risk for complex diseases.

Abstract

Sexual dimorphism in anatomical, physiological and behavioural traits are characteristics of many vertebrate species. In humans, sexual dimorphism is also observed in the prevalence, course and severity of many common diseases, including cardiovascular diseases, autoimmune diseases and asthma. Although sex differences in the endocrine and immune systems probably contribute to these observations, recent studies suggest that sex-specific genetic architecture also influences human phenotypes, including reproductive, physiological and disease traits. It is likely that an underlying mechanism is differential gene regulation in males and females, particularly in sex steroid-responsive genes. Genetic studies that ignore sex-specific effects in their design and interpretation could fail to identify a significant proportion of the genes that contribute to risk for complex diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approximate mean sex-steroid levels in plasma in males and females.
Figure 2: Models of genotype–sex interactions reflecting genotype effects that differ between males and females.
Figure 3: Sex-specific prevalence rates, age of onset and sex ratios for common sex-skewed diseases.
Figure 4: Sex-specific heritabilities in males and females.
Figure 5: Strategy for discovering sex-specific eQTLs contributing to sexual dimorphism in disease risk.

Similar content being viewed by others

References

  1. Alonso, L. C. & Rosenfield, R. L. Oestrogens and puberty. Best Pract. Res. Clin. Endocrinol. Metab. 16, 13–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Korstanje, R. et al. Influence of sex and diet on quantitative trait loci for HDL cholesterol levels in an SM/J by NZB/BlNJ intercross population. J. Lipid Res. 45, 881–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Mackay, T. F. The genetic architecture of quantitative traits: lessons from Drosophila. Curr. Opin. Genet. Dev. 14, 253–257 (2004). A classic review of gene–environment (including genotype–sex) interactions in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  5. Ueno, T. et al. Rat model of familial combined hyperlipidemia as a result of comparative mapping. Physiol. Genomics 17, 38–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Choi, B. G. & McLaughlin, M. A. Why men's hearts break: cardiovascular effects of sex steroids. Endocrinol. Metab. Clin. North Am. 36, 365–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Postma, D. S. Gender differences in asthma development and progression. Gend. Med. 4 (Suppl. B), S133–S146 (2007).

    Article  PubMed  Google Scholar 

  8. Lockshin, M. D. Sex differences in autoimmune disease. Lupus 15, 753–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Harper, P. S. Practical Genetic Counseling 5th edn (Reed Educational and Professional Publishing, Oxford, 1998).

    Google Scholar 

  10. Gater, R. et al. Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the World Health Organization Collaborative Study on Psychological Problems in General Health Care. Arch. Gen. Psychiatry 55, 405–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Andersen, K. et al. Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. EURODEM Incidence Research Group. Neurology 53, 1992–1997 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Aleman, A., Kahn, R. S. & Selten, J. P. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch. Gen. Psychiatry 60, 565–571 (2003).

    Article  PubMed  Google Scholar 

  13. Wooten, G. F., Currie, L. J., Bovbjerg, V. E., Lee, J. K. & Patrie, J. Are men at greater risk for Parkinson's disease than women? J. Neurol. Neurosurg. Psychiatry 75, 637–639 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matanoski, G., Tao, X. G., Almon, L., Adade, A. A. & Davies-Cole, J. O. Demographics and tumor characteristics of colorectal cancers in the United States, 1998–2001. Cancer 107, 1112–1120 (2006).

    Article  PubMed  Google Scholar 

  15. Patsopoulos, N. A., Tatsioni, A. & Ioannidis, J. P. Claims of sex differences: an empirical assessment in genetic associations. JAMA 298, 880–893 (2007). A comprehensive review and critique of the evidence for sex-specific genetic effects on risk for common diseases.

    Article  CAS  PubMed  Google Scholar 

  16. Barrett-Connor, E. Commentary: masculinity, femininity and heart disease. Int. J. Epidemiol. 36, 621–622 (2007).

    Article  PubMed  Google Scholar 

  17. Uekert, S. J. et al. Sex-related differences in immune development and the expression of atopy in early childhood. J. Allergy Clin. Immunol. 118, 1375–1381 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Whitacre, C. C., Reingold, S. C. & O'Looney, P. A. A gender gap in autoimmunity. Science 283, 1277–1278 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Straub, R. H. The complex role of estrogens in inflammation. Endocr. Rev. 28, 521–574 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Dobyns, W. B. et al. Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am. J. Med. Genet. A 129A, 136–143 (2004).

    Article  PubMed  Google Scholar 

  21. Lahn, B. T. & Page, D. C. Functional coherence of the human Y chromosome. Science 278, 675–680 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Lange, J., Skaletsky, H., Bell, G. W. & Page, D. C. MSY Breakpoint Mapper, a database of sequence-tagged sites useful in defining naturally occurring deletions in the human Y chromosome. Nucleic Acids Res. 36, D809–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Reinius, B. et al. An evolutionarily conserved sexual signature in the primate brain. PLoS Genet. 4, e1000100 (2008). An elegant demonstration of the conserved evolution of sexual dimorphism in gene expression patterns in the brain of primates.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rinn, J. L. & Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet. 21, 298–305 (2005). A modern overview of the evolution of sexual dimorphism in gene expression.

    Article  CAS  PubMed  Google Scholar 

  25. Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nature Rev. Genet. 8, 689–698 (2007). A comprehensive review of sexual dimorphism in the regulatory genome.

    Article  CAS  PubMed  Google Scholar 

  27. Reinke, V., Gil, I. S., Ward, S. & Kazmer, K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131, 311–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742–1745 (2003). One of the first genome-wide characterizations of sex-biased gene expression patterns in more than one species of Drosophila.

    Article  CAS  PubMed  Google Scholar 

  29. Baker, D. A., Meadows, L. A., Wang, J., Dow, J. A. & Russell, S. Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster. BMC Genomics 8, 454 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Santos, E. M., Kille, P., Workman, V. L., Paull, G. C. & Tyler, C. R. Sexually dimorphic gene expression in the brains of mature zebrafish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 149, 314–324 (2008).

    Article  PubMed  CAS  Google Scholar 

  31. Nishida, Y., Yoshioka, M. & St-Amand, J. Sexually dimorphic gene expression in the hypothalamus, pituitary gland, and cortex. Genomics 85, 679–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y., Sturgill, D., Parisi, M., Kumar, S. & Oliver, B. Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450, 233–237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sartori-Valinotti, J. C., Iliescu, R., Fortepiani, L. A., Yanes, L. L. & Reckelhoff, J. F. Sex differences in oxidative stress and the impact on blood pressure control and cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 34, 938–945 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Zammaretti, F., Panzica, G. & Eva, C. Sex-dependent regulation of hypothalamic neuropeptide Y-Y1 receptor gene expression in moderate/high fat, high-energy diet-fed mice. J. Physiol. 583, 445–454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhasin, J. M. et al. Sex specific gene regulation and expression QTLs in mouse macrophages from a strain intercross. PLoS ONE 3, e1435 (2008). The first explicit study of genetic variation that affects sex-specific variation in gene expression and of sex-specific eQTLs in a mammalian species.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Angelopoulou, R., Lavranos, G. & Manolakou, P. Establishing sexual dimorphism in humans. Coll. Antropol. 30, 653–658 (2006).

    PubMed  Google Scholar 

  37. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts and misconceptions. Nature Rev. Genet. 9, 255–266 (2008). An excellent review of the use and misuse of the concept of heritability and its role in modern genetic studies.

    Article  CAS  PubMed  Google Scholar 

  38. Shea, M. K. et al. Genetic and non-genetic correlates of vitamins K and D. Eur. J. Clin. Nutr. 21 Nov 2007 (doi: 10.1038/sj.ejcn.1602959).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Santamaria, A. et al. Quantitative trait locus on chromosome 12q14.1 influences variation in plasma plasminogen levels in the San Antonio Family Heart Study. Hum. Biol. 79, 515–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. de Simone, G. et al. Assessment of the interaction of heritability of volume load and left ventricular mass: the HyperGEN offspring study. J. Hypertens. 25, 1397–1402 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Pan, L., Ober, C. & Abney, M. Heritability estimation of sex-specific effects on human quantitative traits. Genet. Epidemiol. 31, 338–347 (2007).

    Article  PubMed  Google Scholar 

  42. Weiss, L. A., Pan, L., Abney, M. & Ober, C. The sex-specific genetic architecture of quantitative traits in humans. Nature Genet. 38, 218–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ober, C., Abney, M. & McPeek, M. S. The genetic dissection of complex traits in a founder population. Am. J. Hum. Genet. 69, 1068–1079 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abney, M., McPeek, M. S. & Ober, C. Heritabilities of quantitative traits in a founder population. Am. J. Hum. Genet. 68, 1302–1307 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seda, O. et al. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension 51, 1156–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Karasik, D. & Ferrari, S. L. Contribution of gender-specific genetic factors to osteoporosis risk. Ann. Hum. Genet. 72, 696–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, C. et al. A computational model for sex-specific genetic architecture of complex traits in humans: implications for mapping pain sensitivity. Mol. Pain 4, 13 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Brookes, S. T. et al. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J. Clin. Epidemiol. 57, 229–236 (2004).

    Article  PubMed  Google Scholar 

  49. Higaki, J. et al. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation 101, 2060–2065 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. O'Donnell, C. J. et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 97, 1766–1772 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Stankovic, A., Zivkovic, M. & Alavantic, D. Angiotensin I-converting enzyme gene polymorphism in a Serbian population: a gender-specific association with hypertension. Scand. J. Clin. Lab. Invest. 62, 469–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Fornage, M. et al. Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation 97, 1773–1779 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Weiss, L. A., Abney, M., Cook, E. H., Jr & Ober, C. Sex-specific genetic architecture of whole blood serotonin levels. Am. J. Hum. Genet. 76, 33–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Anholt, R. R. & Mackay, T. F. Quantitative genetic analyses of complex behaviours in Drosophila. Nature Rev. Genet. 5, 838–849 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Mackay, T. F. & Anholt, R. R. Of flies and man: Drosophila as a model for human complex traits. Annu. Rev. Genomics Hum. Genet. 7, 339–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Melo, J. A., Shendure, J., Pociask, K. & Silver, L. M. Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nature Genet. 13, 147–153 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Peirce, J. L., Derr, R., Shendure, J., Kolata, T. & Silver, L. M. A major influence of sex-specific loci on alcohol preference in C57Bl/6 and DBA/2 inbred mice. Mamm. Genome 9, 942–948 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Athirakul, K. et al. Increased blood pressure in mice lacking cytochrome P450 2J5. FASEB J. 20 Aug 2008 (doi: fj.08-114413v1).

  59. Ponder, C. A., Munoz, M., Gilliam, T. C. & Palmer, A. A. Genetic architecture of fear conditioning in chromosome substitution strains: relationship to measures of innate (unlearned) anxiety-like behavior. Mamm. Genome 18, 221–228 (2007).

    Article  PubMed  Google Scholar 

  60. Mattson, D. L. et al. Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Am. J. Physiol. Renal Physiol. 293, F1905–F1914 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Tu, K., Chen, Z. & Lipscombe, L. L. Prevalence and incidence of hypertension from 1995 to 2005: a population-based study. CMAJ 178, 1429–1435 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    Article  PubMed  Google Scholar 

  63. Burt, V. L. et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 25, 305–313 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Martins, D., Nelson, K., Pan, D., Tareen, N. & Norris, K. The effect of gender on age-related blood pressure changes and the prevalence of isolated systolic hypertension among older adults: data from NHANES III. J. Gend. Specif. Med. 4, 10–13, 20 (2001).

    CAS  PubMed  Google Scholar 

  65. Kato, N. et al. Comprehensive analysis of the renin-angiotensin gene polymorphisms with relation to hypertension in the Japanese. J. Hypertens. 18, 1025–1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Rigat, B. et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krege, J. H. et al. Male–female differences in fertility and blood pressure in ACE-deficient mice. Nature 375, 146–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Leung, A. & Chue, P. Sex differences in schizophrenia, a review of the literature. Acta Psychiatr. Scand. Suppl. 401, 3–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. McGrath, J. et al. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med. 2, 13 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cardno, A. G. & Gottesman, II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am. J. Med. Genet. 97, 12–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Shifman, S. et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet. 4, e28 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wedenoja, J. et al. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol. Psychiatry 13, 673–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Eastwood, S. L. & Harrison, P. J. Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol. Psychiatry 8, 769, 821–731 (2003).

    Article  CAS  Google Scholar 

  75. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Baker, B. S., Carpenter, A. T., Esposito, M. S., Esposito, R. E. & Sandler, L. The genetic control of meiosis. Annu. Rev. Genet. 10, 53–134 (1976).

    Article  CAS  PubMed  Google Scholar 

  77. Coop, G. & Przeworski, M. An evolutionary view of human recombination. Nature Rev. Genet. 8, 23–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Kong, A. et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Coop, G., Wen, X., Ober, C., Pritchard, J. K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheung, V. G., Burdick, J. T., Hirschmann, D. & Morley, M. Polymorphic variation in human meiotic recombination. Am. J. Hum. Genet. 80, 526–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez, F. D. CD14, endotoxin, and asthma risk: actions and interactions. Proc. Am. Thorac. Soc. 4, 221–225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zambelli-Weiner, A. et al. Evaluation of the CD14/-260 polymorphism and house dust endotoxin exposure in the Barbados Asthma Genetics Study. J. Allergy Clin. Immunol. 115, 1203–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Simpson, A. et al. Endotoxin exposure, CD14, and allergic disease: an interaction between genes and the environment. Am. J. Respir. Crit. Care Med. 174, 386–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Berchtold, N. C. et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl Acad. Sci. USA 105, 15605–15610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gupta, V. & Singh, S. M. Sex dimorphism in antitumor response of chemotherapeutic drug cisplatin in a murine host-bearing a T-cell lymphoma. Anticancer Drugs 19, 583–592 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Jackson, A., Stephens, D. & Duka, T. Gender differences in response to lorazepam in a human drug discrimination study. J. Psychopharmacol. 19, 614–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Klein, W. Gender differences in clinical trials in coronary heart disease: response to drug therapy. Eur. Heart J. 17, 1786–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nature Genet. 39, 1202–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, W. et al. Evaluation of genetic variation contributing to differences in gene expression between populations. Am. J. Hum. Genet. 82, 631–640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Storey, J. D. A direct approach to false discovery rates. J. Royal Stat. Soc. B 64, 479–198 (2002).

    Article  Google Scholar 

  94. Gilad, Y., Rifkin, S. A. & Pritchard, J. K. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24, 408–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Darwin, C. On the Origins of Species by Means of Natural Selection (John Murray, London, 1859).

    Google Scholar 

  96. Cunningham, J. T. Sexual Dimorphism in the Animal Kingdom (Adam and Charles Black, London, 1900).

    Google Scholar 

  97. Kimura, K. I., Ote, M., Tazawa, T. & Yamamoto, D. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438, 229–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B. J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Kimchi, T., Xu, J. & Dulac, C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Plavcan, J. M. Sexual dimorphism in primate evolution. Yearb. Phys. Anthropol. 44, 25–53 (2001).

    Article  Google Scholar 

  101. Andersson, M. Sexual Selection (Princeton Univ. Press, New Jersey, 1994). Comprehensive review and synthesis of essential topics in sexual selection, providing insight into the evolution of sex differences in nature and the role of selection and constraint in the development of secondary sexual traits.

    Book  Google Scholar 

  102. Geary, D. C. Male, Female: The Evolution of Human Sex Differences (American Psychological Association, Washington DC, 1998).

    Book  Google Scholar 

  103. Wizeman, T. M. & Pardue, M.-L. (eds) Exploring the Biological Contributions to Human Health: Does Sex Matter? (National Academy Press, Washington DC, 2001).

    Google Scholar 

  104. Badyaev, A. V. & Hill, G. E. Avian sexual dichromatism in relation to phylogeny and ecology. Ann. Rev. Ecol. Evol. Syst. 34, 27–49 (2003).

    Article  Google Scholar 

  105. Lande, R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34, 292–305 (1980). A classic study that uses quantitative population genetic models to show that genetic correlations influence the expression and evolution of sexually dimorphic traits.

    Article  PubMed  Google Scholar 

  106. Rice, W. R. & Chippindale, A. K. Intersexual ontogenetic conflict. J. Evol. Biol. 14, 685–693 (2001).

    Article  Google Scholar 

  107. Nelson, J. L. Microchimerism in human health and disease. Autoimmunity 36, 5–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Lambert, N. C. et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum. 50, 906–914 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Maloney, S. et al. Microchimerism of maternal origin persists into adult life. J. Clin. Invest. 104, 41–47 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reed, A. M., Picornell, Y. J., Harwood, A. & Kredich, D. W. Chimerism in children with juvenile dermatomyositis. Lancet 356, 2156–2157 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Reed, A. M., McNallan, K., Wettstein, P., Vehe, R. & Ober, C. Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis? J. Immunol. 172, 5041–5046 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Yan, Z. et al. Male microchimerism in women without sons: quantitative assessment and correlation with pregnancy history. Am. J. Med. 118, 899–906 (2005).

    Article  PubMed  Google Scholar 

  113. Loubiere, L. S. et al. Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab. Invest. 86, 1185–1192 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Stevens, A. M., Hermes, H. M., Rutledge, J. C., Buyon, J. P. & Nelson, J. L. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet 362, 1617–1623 (2003).

    Article  PubMed  Google Scholar 

  115. Stevens, A. M. et al. Liver biopsies from human females contain male hepatocytes in the absence of transplantation. Lab. Invest. 84, 1603–1609 (2004).

    Article  PubMed  Google Scholar 

  116. Khosrotehrani, K., Johnson, K. L., Cha, D. H., Salomon, R. N. & Bianchi, D. W. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA 292, 75–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Nelson, J. L. et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351, 559–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Johnson, K. L. et al. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum. 44, 1848–1854 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Ando, T., Imaizumi, M., Graves, P. N., Unger, P. & Davies, T. F. Intrathyroidal fetal microchimerism in Graves' disease. J. Clin. Endocrinol. Metab. 87, 3315–3320 (2002).

    CAS  PubMed  Google Scholar 

  120. Nelson, J. L. et al. Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet beta cell microchimerism. Proc. Natl Acad. Sci. USA 104, 1637–1642 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Klintschar, M., Schwaiger, P., Mannweiler, S., Regauer, S. & Kleiber, M. Evidence of fetal microchimerism in Hashimoto's thyroiditis. J. Clin. Endocrinol. Metab. 86, 2494–2498 (2001).

    CAS  PubMed  Google Scholar 

  122. Artlett, C. M. et al. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies. Childhood Myositis Heterogeneity Collaborative Group. Lancet 356, 2155–2156 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Miyashita, Y., Ono, M., Ono, M., Ueki, H. & Kurasawa, K. Y chromosome microchimerism in rheumatic autoimmune disease. Ann. Rheum. Dis. 59, 655–656 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Badenhoop, K. Intrathyroidal microchimerism in Graves' disease or Hashimoto's thyroiditis: regulation of tolerance or alloimmunity by fetal-maternal immune interactions? Eur. J. Endocrinol. 150, 421–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Nelson, J. L. Maternal–fetal immunology and autoimmune disease: is some autoimmune disease auto-alloimmune or allo-autoimmune? Arthritis Rheum. 39, 191–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Gammill, H. S. & Nelson, J. L. Naturally acquired microchimerism. Int. J. Dev. Biol. (in the press).

  127. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Falls, J. G., Pulford, D. J., Wylie, A. A. & Jirtle, R. L. Genomic imprinting: implications for human disease. Am. J. Pathol. 154, 635–647 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wilkins, J. F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nature Rev. Genet. 4, 359–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Morison, I. M., Ramsay, J. P. & Spencer, H. G. A census of mammalian imprinting. Trends Genet. 21, 457–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Bunzel, R. et al. Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res. Mol. Brain Res. 59, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Giannoukakis, N., Deal, C., Paquette, J., Kukuvitis, A. & Polychronakos, C. Polymorphic functional imprinting of the human IGF2 gene among individuals, in blood cells, is associated with H19 expression. Biochem. Biophys. Res. Commun. 220, 1014–1019 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Wolf, J. B., Cheverud, J. M., Roseman, C. & Hager, R. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet. 4, e1000091 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Kaufman, J. M. & Vermeulen, A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev. 26, 833–876 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Khosla, S. et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 83, 2266–2274 (1998).

    CAS  PubMed  Google Scholar 

  136. Winters, S. J., Talbott, E., Guzick, D. S., Zborowski, J. & McHugh, K. P. Serum testosterone levels decrease in middle age in women with the polycystic ovary syndrome. Fertil. Steril. 73, 724–729 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Cooper, G. S. & Stroehla, B. C. The epidemiology of autoimmune diseases. Autoimmun. Rev. 2, 119–125 (2003).

    Article  PubMed  Google Scholar 

  138. Mendez, E. P. et al. US incidence of juvenile dermatomyositis, 1995–1998: results from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Registry. Arthritis Rheum. 49, 300–305 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Rosenfield and J. L. Nelson for discussions, and to S. Khosla and E. Atkinson for providing primary data on sex-steroid levels in adults. The authors are supported in part by National Institutes of Health (NIH) grants HD021244, HL070831 and HL085197 (C.O.), GM077959 (Y.G.) and T32 HL07605 (D.A.L.). Y.G. is also supported by the Sloan foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Ober.

Related links

Related links

FURTHER INFORMATION

Carole Ober's homepage

Yoav Gilad's homepage

Centers for Disease Control National Health and Nutrition Examination Survey (NHANES) III

Centers for Disease Control National Health Interview Survey (CDC NHIS)

Glossary

Heterogametic

Refers to the sex that produces gametes that have two different sex chromosomes. In mammals, males are the heterogametic sex (XY) and females are homogametic (XX), whereas in birds females are heterogametic (ZW).

Genetic architecture

Refers to the underlying genetic basis for a trait.

Pyloric stenosis

A common birth defect that results from the narrowing of the pylorus (lower part of the stomach), which prevents food and other stomach contents from passing into the intestine. This condition causes severe vomiting in infancy. Also called infantile hypertrophic pyloric stenosis.

Regulatory genome

The total set of different DNA molecules of an organelle, cell or organism that are involved in the regulation of gene expression.

Sexual selection

Differential reproductive success resulting from the competition for fertilization, which can occur through competition among the same sex (mate competition) or through attraction to the opposite sex (mate choice).

Ontogenetic conflict

Occurs when the same allele has different fitness consequences in juveniles and adults or in males and females.

Expression QTL

(eQTL). Loci at which genetic allelic variation is associated with variation in gene expression.

Alloimmune

An immune reaction against cells from another individual of the same species. Alloimmunity can occur during transfusion or transplantation, or during pregnancy.

Heritability

The proportion of the total phenotypic variance for a given trait that can be attributed to genetic variation among individuals.

Forced expiratory volume at 1 second

(FEV1). The volume exhaled in the first second of a forced expiratory manoeuvre. This index is used to assess airway obstruction, bronchoconstriction or bronchodilation.

Type I error

The probability of rejecting the null hypothesis when it is true, also referred to as a false positive.

Multiple testing

An analysis in which multiple independent hypotheses are tested. Multiple testing must be taken into account during statistical analysis, as the combined probability of type I error increases in an unadjusted analysis.

Consomic strain

Inbred strain in which a chromosome has been replaced by a homologous chromosome from another inbred strain.

Penetrance

The probability of observing a specific phenotype in individuals carrying a particular genotype.

Linkage disequilibrium

(LD). The nonrandom association of alleles at two or more loci. The pattern of linkage disequilibrium in a given genomic region reflects the history of natural selection, mutation, recombination, genetic drift, and other demographic and evolutionary forces.

Nondisjunction

The failure of chromosomes to separate at anaphase.

Aneuploidy

The presence of an abnormal number of chromosomes, either more or less than the diploid number.

Ectopic exchange

Homologous recombination between non-allelic chromosomal regions.

Odds ratio

(OR). Compares the likelihood of an outcome (for example, a disease) between two groups (for example, cases and controls). It is measured as the ratio of the odds in one group to the odds in the second group and can be calculated by the following formula: OR = p(1 − q)/q(1 − p), where p is the probability of the event occurring for the first group and q the probability for the second group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ober, C., Loisel, D. & Gilad, Y. Sex-specific genetic architecture of human disease. Nat Rev Genet 9, 911–922 (2008). https://doi.org/10.1038/nrg2415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing