Skip to main content

Advertisement

Log in

Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Anterior cruciate ligament (ACL) tears are known to be a risk factor for incident knee osteoarthritis (OA). At the present time, it is unknown whether an incidental ACL tear in those with established knee OA alters the pattern of synovial joint damage. Therefore, our aim was to assess whether ACL tears in persons with knee OA are associated with specific patterns of cartilage loss, meniscal degeneration, and bone marrow lesion (BML) location. We included 160 participants from the progression subcohort of the Osteoarthritis Initiative (OAI) Study, an ongoing 4-year, multicenter study, focusing on knee OA. Regional cartilage morphometry measures including cartilage volume (mm3), denuded area, normalized cartilage volume, bone surface area, as well as location of meniscal pathology and BMLs in index knees on the same side were compared between those with and without ACL tears. Of the 160 subjects (51% women, age 62.1 (±9.9), BMI 30.3 (±4.7) kg/m2), 14.4% had an ACL tear. After adjusting for age, BMI and gender participants with ACL tears had significantly greater cartilage volume in the posterior lateral femur (P = 0.04) and the central medial tibia (0.001) compared to those without ACL tears. Normalized cartilage volume was not different between those with and without ACL tears. In addition, individuals with ACL tears had significantly larger bone surface areas in the medial tibia (P = 0,006), the central medial tibia (P = 0.008), the posterior lateral femur (P = 0.004), and the posterior medial femur (P = 0.04). Furthermore, participants with ACL tears showed significantly more meniscal derangement in the lateral posterior horn (P = 0.019) and significantly more BMLs in the lateral femur (P = 0.0025). We found clear evidence of predominant lateral tibiofemoral involvement, with OA-associated findings on MRI, including increased denuded area and bone surface area, BMLs, and meniscal derangement in knees of individuals with ACL tears compared to those without.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prevalence of disabilities and associated health conditions among adults–United States (1999) MMWR Morb Mortal Wkly Rep 2001 50(7):120–125

  2. Felson DT, McAlindon TE, Anderson JJ, Naimark A, Weissman BW, Aliabadi P et al (1997) Defining radiographic osteoarthritis for the whole knee. Osteoarthr Cartil 5(4):241–250

    Article  PubMed  CAS  Google Scholar 

  3. Mackenzie R, Palmer CR, Lomas DJ, Dixon AK (1996) Magnetic resonance imaging of the knee: diagnostic performance studies. Clin Radiol 51(4):251–257

    Article  PubMed  CAS  Google Scholar 

  4. Cotten A, Delfaut E, Demondion X, Lapegue F, Boukhelifa M, Boutry N et al (2000) MR imaging of the knee at 0.2 and 1.5 T: correlation with surgery. AJR Am J Roentgenol 174(4):1093–1097

    PubMed  CAS  Google Scholar 

  5. Vincken PW, ter Braak BP, van Erkell AR, de Rooy TP, Mallens WM, Post W et al (2002) Effectiveness of MR imaging in selection of patients for arthroscopy of the knee. Radiology 223(3):739–746

    Article  PubMed  Google Scholar 

  6. Eckstein F, Glaser C (2004) Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol 8(4):329–353

    Article  PubMed  Google Scholar 

  7. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D et al (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12(3):177–190

    Article  PubMed  CAS  Google Scholar 

  8. Felson DT, Anderson JJ, Naimark A, Kannel W, Meenan RF (1989) The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: the Framingham study. J Rheumatol 16(9):1241–1245

    PubMed  CAS  Google Scholar 

  9. Davis MA, Ettinger WH, Neuhaus JM, Cho SA, Hauck WW (1989) The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am J Epidemiol 130(2):278–288

    PubMed  CAS  Google Scholar 

  10. Wilder FV, Hall BJ, Barrett JP Jr, Lemrow NB (2002) History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological assessment. The clearwater osteoarthritis study. Osteoarthr Cartil 10(8):611–616

    Article  PubMed  CAS  Google Scholar 

  11. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769

    Article  PubMed  Google Scholar 

  12. Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34(2):86–92

    PubMed  CAS  Google Scholar 

  13. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578

    PubMed  CAS  Google Scholar 

  14. Roos H, Adalberth T, Dahlberg L, Lohmander LS (1995) Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil 3(4):261–267

    Article  PubMed  CAS  Google Scholar 

  15. Myklebust R, Mayhew TM (1998) Further evidence of species variation in mechanisms of epithelial cell loss in mammalian small intestine: ultrastructural studies on the reindeer (Rangifer tarandus) and seal (Phoca groenlandica). Cell Tissue Res 291(3):513–523

    Article  PubMed  CAS  Google Scholar 

  16. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22(5):632–644

    Article  PubMed  CAS  Google Scholar 

  17. Kannus P, Jarvinen M (1989) Posttraumatic anterior cruciate ligament insufficiency as a cause of osteoarthritis in a knee joint. Clin Rheumatol 8(2):251–260

    Article  PubMed  CAS  Google Scholar 

  18. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152

    Article  PubMed  CAS  Google Scholar 

  19. Maletius W, Messner K (1999) Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med 27(6):711–717

    PubMed  CAS  Google Scholar 

  20. von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63(3):269–273

    Article  Google Scholar 

  21. McDaniel WJ Jr, Dameron TB Jr (1983) The untreated anterior cruciate ligament rupture. Clin Orthop Relat Res 172:158–163

    PubMed  Google Scholar 

  22. Clatworthy M, Amendola A (1999) The anterior cruciate ligament and arthritis. Clin Sports Med 18(1):173–198 vii

    Article  PubMed  CAS  Google Scholar 

  23. Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT (2005) Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum 52(3):794–799

    Article  PubMed  Google Scholar 

  24. Maffulli N, Binfield PM, King JB (2003) Articular cartilage lesions in the symptomatic anterior cruciate ligament-deficient knee. Arthroscopy 19(7):685–690

    Article  PubMed  Google Scholar 

  25. Costa-Paz M, Muscolo DL, Ayerza M, Makino A, Aponte-Tinao L (2001) Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy 17(5):445–449

    Article  PubMed  CAS  Google Scholar 

  26. Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR (2005) Association between abnormal kinematics and degenerative change in knees of people with chronic anterior cruciate ligament deficiency: a magnetic resonance imaging study. Aust J Physiother 51(4):233–240

    Article  PubMed  Google Scholar 

  27. Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR (2004) Comparison of kinematic analysis by mapping tibiofemoral contact with movement of the femoral condylar centres in healthy and anterior cruciate ligament injured knees. J Orthop Res 22(5):955–962

    Article  PubMed  Google Scholar 

  28. Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C et al. (2009) Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative. Ann Rheum Dis 68(3):349–356

    Google Scholar 

  29. Peterfy C, Li J, Zaim S, Duryea J, Lynch J, Miaux Y et al (2003) Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol 32(3):128–132

    Article  PubMed  CAS  Google Scholar 

  30. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502

    Article  PubMed  CAS  Google Scholar 

  31. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston leeds osteoarthritis knee score). Ann Rheum Dis 67(2):206–211

    Article  PubMed  CAS  Google Scholar 

  32. Frobell RB, Lohmander LS, Roos HP (2007) Acute rotational trauma to the knee: poor agreement between clinical assessment and magnetic resonance imaging findings. Scand J Med Sci Sports 17(2):109–114

    PubMed  CAS  Google Scholar 

  33. Noyes FR, Bassett RW, Grood ES, Butler DL (1980) Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am 62(5):687–695, 757

    Google Scholar 

  34. Indelicato PA, Bittar ES (1985) A perspective of lesions associated with ACL insufficiency of the knee. A review of 100 cases. Clin Orthop Relat Res 198:77–80

    PubMed  Google Scholar 

  35. Escalas F, Curell R (1994) Occult posttraumatic bone injury. Knee Surg Sports Traumatol Arthrosc 2(3):147–149

    Article  PubMed  CAS  Google Scholar 

  36. Even-Sapir E, Arbel R, Lerman H, Flusser G, Livshitz G, Halperin N (2002) Bone injury associated with anterior cruciate ligament and meniscal tears: assessment with bone single photon emission computed tomography. Invest Radiol 37(9):521–527

    Article  PubMed  Google Scholar 

  37. Lahm A, Erggelet C, Steinwachs M, Reichelt A (1998) Articular and osseous lesions in recent ligament tears: arthroscopic changes compared with magnetic resonance imaging findings. Arthroscopy 14(6):597–604

    Article  PubMed  CAS  Google Scholar 

  38. Swaerd P, Kostogiannis I, Neuman P, Boegard T, Roos H (2010) Differences in radiological characteristics between post-traumatic and non-traumatic knee osteoarthritis. Scand J Med Sci Sports 20(5):731–739

    Google Scholar 

  39. Tandogan RN, Taser O, Kayaalp A, Taskiran E, Pinar H, Alparslan B et al (2004) Analysis of meniscal and chondral lesions accompanying anterior cruciate ligament tears: relationship with age, time from injury, and level of sport. Knee Surg Sports Traumatol Arthrosc 12(4):262–270

    Article  PubMed  Google Scholar 

  40. Scarvell JM, Smith PN, Refshauge KM, Galloway H, Woods K (2005) Comparison of kinematics in the healthy and ACL injured knee using MRI. J Biomech 38(2):255–262

    Article  PubMed  Google Scholar 

  41. Nishimori M, Deie M, Adachi N, Kanaya A, Nakamae A, Motoyama M et al (2008) Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 16(3):270–274

    Article  PubMed  Google Scholar 

  42. Cipolla M, Scala A, Gianni E, Puddu G (1995) Different patterns of meniscal tears in acute anterior cruciate ligament (ACL) ruptures and in chronic ACL-deficient knees. Classification, staging and timing of treatment. Knee Surg Sports Traumatol Arthrosc 3(3):130–134

    Article  PubMed  CAS  Google Scholar 

  43. Nikolic DK (1998) Lateral meniscal tears and their evolution in acute injuries of the anterior cruciate ligament of the knee. Arthroscopic analysis. Knee Surg Sports Traumatol Arthrosc 6(1):26–30

    Article  PubMed  CAS  Google Scholar 

  44. Smith JP III, Barrett GR (2001) Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees. A prospective analysis of 575 tears. Am J Sports Med 29(4):415–419

    PubMed  Google Scholar 

  45. Smith GN, Mickler EA, Albrecht ME, Myers SL, Brandt KD (2002) Severity of medial meniscus damage in the canine knee after anterior cruciate ligament transection. Osteoarthr Cartil 10(4):321–326

    Article  PubMed  CAS  Google Scholar 

  46. Fowler PJ (1994) Bone injuries associated with anterior cruciate ligament disruption. Arthroscopy 10(4):453–460

    Article  PubMed  CAS  Google Scholar 

  47. Rosen MA, Jackson DW, Berger PE (1991) Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy 7(1):45–51

    Article  PubMed  CAS  Google Scholar 

  48. Speer KP, Spritzer CE, Bassett FH III, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20(4):382–389

    Article  PubMed  CAS  Google Scholar 

  49. Spindler KP, Schils JP, Bergfeld JA, Andrish JT, Weiker GG, Anderson TE et al (1993) Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med 21(4):551–557

    Article  PubMed  CAS  Google Scholar 

  50. Stein LN, Fischer DA, Fritts HM, Quick DC (1995) Occult osseous lesions associated with anterior cruciate ligament tears. Clin Orthop Relat Res 313:187–193

    PubMed  Google Scholar 

  51. Johnson DL, Urban WP Jr, Caborn DN, Vanarthos WJ, Carlson CS (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26(3):409–414

    PubMed  CAS  Google Scholar 

  52. Murphy BJ, Smith RL, Uribe JW, Janecki CJ, Hechtman KS, Mangasarian RA (1992) Bone signal abnormalities in the posterolateral tibia and lateral femoral condyle in complete tears of the anterior cruciate ligament: a specific sign? Radiology 182(1):221–224

    PubMed  CAS  Google Scholar 

  53. Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M (2008) Bone bruises associated with ACL rupture: correlation with injury mechanism. Am J Sports Med 36(5):927–933

    Article  PubMed  Google Scholar 

  54. Segawa H, Omori G, Koga Y (2001) Long-term results of non-operative treatment of anterior cruciate ligament injury. Knee 8(1):5–11

    Article  PubMed  CAS  Google Scholar 

  55. Gillquist J, Messner K (1999) Anterior cruciate ligament reconstruction and the long-term incidence of gonarthrosis. Sports Med 27(3):143–156

    Article  PubMed  CAS  Google Scholar 

  56. Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury: a follow-up study. Am J Sports Med 31(6):981–989

    PubMed  Google Scholar 

  57. Jones HP, Appleyard RC, Mahajan S, Murrell GA (2003) Meniscal and chondral loss in the anterior cruciate ligament injured knee. Sports Med 33(14):1075–1089

    Article  PubMed  Google Scholar 

  58. Amin S, Guermazi A, Lavalley MP, Niu J, Clancy M, Hunter DJ et al (2008) Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthr Cartil 16(8):897–902

    Article  PubMed  CAS  Google Scholar 

  59. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N et al (2003) Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226(2):373–381

    Article  PubMed  Google Scholar 

  60. Chan WP, Lang P, Stevens MP, Sack K, Majumdar S, Stoller DW et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157(4):799–806

    PubMed  CAS  Google Scholar 

  61. Lee JK, Yao L, Phelps CT, Wirth CR, Czajka J, Lozman J (1988) Anterior cruciate ligament tears: MR imaging compared with arthroscopy and clinical tests. Radiology 166(3):861–864

    PubMed  CAS  Google Scholar 

  62. Rose NE, Gold SM (1996) A comparison of accuracy between clinical examination and magnetic resonance imaging in the diagnosis of meniscal and anterior cruciate ligament tears. Arthroscopy 12(4):398–405

    Article  PubMed  CAS  Google Scholar 

  63. Glashow JL, Katz R, Schneider M, Scott WN (1989) Double-blind assessment of the value of magnetic resonance imaging in the diagnosis of anterior cruciate and meniscal lesions. J Bone Joint Surg Am 71(1):113–119

    PubMed  CAS  Google Scholar 

  64. Polly DW Jr, Callaghan JJ, Sikes RA, McCabe JM, McMahon K, Savory CG (1988) The accuracy of selective magnetic resonance imaging compared with the findings of arthroscopy of the knee. J Bone Joint Surg Am 70(2):192–198

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the participants and staff of the OAI. We would like to thank the Principal Investigators (Michael Nevitt, Kent Kwoh, Charles B. Eaton, Rebecca Jackson, Marc Hochberg, Joan Bathon), Co-Investigators, and staff of the Osteoarthritis Initiative. The OAI is a public–private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript has received the approval of the OAI Publications Committee based on a review of its scientific content and data interpretation. We would also like to acknowledge the following persons who contributed to this work: Piran Aliabadi (read the knee—X-ray films) and David Felson (chaired the X-ray adjudication sessions).

Conflict of interest

Nothing to declare. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Hunter.

Additional information

The Osteoarthritis Initiative and this pilot study are conducted and supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (N01-AR-2-2262, N01-AR-2-2262, and N01-AR-2-2258) in collaboration with the OAI Investigators and Consultants. This manuscript has been reviewed by the OAI Publication committee for scientific content and data interpretation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, V., Li, L., Lo, G. et al. Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol Int 32, 1197–1208 (2012). https://doi.org/10.1007/s00296-010-1749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1749-y

Keywords

Navigation